Bruce Smith Books

- Mastering Amiga
- Programming
Secrets

Paul Overaa

Mastering Amiga Programming Secrets
Y VS S SR U L

Mastering Amiga Programming Secrets

© Paul Overaa 1995
ISBN: 1-873308-36-1 First Edition: January 1995

Editor: Mark Webb
Typesetting: Bruce Smith Books Ltd

Workbench, Amiga and AmigaDOS are trademarks of Commodore-
Amiga, Inc. UNIX is a trademark of AT&T. MS-DOS is a trademark of
Microsoft Corporation. All other Trademarks and Registered
Trademarks used are hereby acknowledged.

All rights reserved. No part of this publication may be reproduced
or translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written consent of the copyright
holder(s).

Disclaimer: While every effort has been made to ensure that the
information in this publication (and any programs and software) is
correct and accurate, the Publisher can accept no liability for any
consequential loss or damage, however caused, arising as a result
of using the information printed in this book.

E. & O.E.

The rights of Paul Overaa to be identified as the Author of the Work
has been asserted by him in accordance with the Copyright, Designs
and Patents Act 1988.

Bruce Smith Books is an imprint of Bruce Smith Books Limited.
Published by:

Bruce Smith Books Limited. PO Box 382, St. Albans, Herts, AL2 3]JD.
Telephone: (01923) 894355, Fax: (01923) 894366

Registered in England No. 2695164.
Registered Office: Worplesdon Chase, Worplesdon, Guildford, Surrey, GUI 3UA.

Printed and bound in the UK by Ashford Colour Press, Gosport.

The Author
R T

The Author

PAUL OVERAA initially qualified as an analytical chemist and
spent two decades working in a field of physical chemistry known
as gas-liquid chromatography. It was during this time that he
became heavily involved with compputerised data reduction
techniques and computer programming. Nowadays he considers
himself a programmer first and an analytical chemist second.

Paul has previously written books on low-level 6502 and Z80
assembly language programming, on Amiga programming in C and
ARexx, and on both Commodore Amiga and Atari ST program
design. He is a proficient C and 68000 assembly language coder,
and an experienced Amiga programmer. As a technical author he
also writes for a great many computer programming magazines and
periodicals including Amiga Pro, Amiga Shopper, Amiga User
International, Amiga Computing, and Computing. In the past he has
worked for Amiga Format, Program Now, Computing, ST World,
Atari ST User and the one time highly influential Transactor Amiga
magazine.

In addition to computing columns he also provides expertise on
MIDI programming for a variety of magazines and in the past he has
written for Sound on Sound, International Musician, and many other
publications. His main passion nowadays is computer programming
with his research interests having a strong bias towards language-
independent program design techniques. Other interests include
Badminton, Yoga, mathematics and, when he has time and the
weather on his side, windsurfing.

Mastering Amiga Programming Secrets
P e T Y RSN S SR T]

Contents

I
Contents
Preface 5
1 A Coder’s Introduction 11
Other ImportantRules 13
2 Coding those All-important Abstract Data Types 17
The Stack ADT e 19
The RoutinesInUse, 29
A Taste Of Things ToCome 29
3 Using an ADT for Dynamic Amiga Resource Handling 31
Making The Most Of Reusable Code 36
Controlling The Resource Allocation Process 42
The Intuition Angle 44
Project Management 47
4 A FlashInterrupt Trick 51
Putting The Pieces Together 54
The High-Level C Approach 55
Flashing Colours 58
The Equivalent Assembler Example 60
An Alternative Amiga-Oriented Solution 63
5 Using Exec Signals in Your Own Programs 65
Signal Bitsand Masks 68
Some Task Signal Communication Mechanics 69
Putting It All Together 69
ADT Stack Based Signal Allocation 71
Aiming For A More General Colour Flashing Solution 74
6 Getting Your Programs to Talk to Each Other ...77
Adding Data To A Message Structure 78
The Use Of Multiple Message Ports 82
Setting Up A Message Port 83
Sending A MesSsSage 83
Some Main Program Coding Issues 85
The Colour Flashing Program Itself 87
Using A Flash Utility 90

Mastering Amiga Programming Secrets
22070 05 ko BT S i i A MRS A S S N R i]

7

10

11

Copper Lists: What They Are and How They Work .91

The Copper InstructionSet 92
Terminating A Copper List 94
Getting Things Into Perspective 95
Using Run-Time Libraries From Assembler Code 95
Failed Open Library Calls 97
Prefixes 97
Library Vector Offset (LVO) Values 98
First Coding Stages 98
Preventing Multitasking 100
Creating An Example Copper List 101
Allocating Display Memory 104
Setting The Bitplane Pointers e 104
Using The Copper List 105
The High-Level Alternative 114
Intuition e e 116
Copper List Shading Effects 119
Making Up As You Go Along 130
How Viruses Get at the Amiga Library Functions 137
How Library Access Really Works 138
Vanishing Vectors i 140
Music, Midi, and the MPX File Connection 143
Standard Midi and MPX Format Files 145
MidiWriteX 146
Devices — An Introduction 147
Devices Commands 150
Opening And Closing ADevice 152
Device Use Summaryc.. i, 155
The DolO() Standard Interface Function 156
Timer Device e 156
MidiPlayX e 157
The Workbench MidiPlayer Program 167
The AmigaDOS Style MidiPlayer Command 168
Overview Of The Standard Midi File Structure 169

AMatter Of Design 172

Contents

I
Chunk Analysis i i 176
Adopting A Modular Approach 181
The Intuition Angle 182
12 Colour Cycling 187
The Intuition Connection 188
CycleMessages and TheirUse 191
Setting Up A Message Port 193
Sending AMesSage i 193
Some Main Program Coding Issues 195
The Colour Cycling Program Itself 197
Using The Cycle Utility 201
13 Mixed Code Programming 203
XDEFand XREF 205
Specific SAS/Lattice C Conventions 205
Aztec CConventions, 206
A Couple Of Examples 207
14 Creating Static Tile Effects - PartOne 213
The Low-level Approach 217
Drawing ARow Of Images 219
The Complete Routine 220
Building A Test Framework 223
The Bottom Line 232
15 Creating Static Tile Effect - Part Two 233
A Crafty Twist Adds Another Dimension 238
The DrawTiles() Routine - Advanced Approach 240
Some Importantldeas 248
16 Creating Mosaic Effects 251
Making A Start e 253
The Co-ordinate Generation Scheme 254
A Complete Mosaic Copy Routine 258
The Blitter Minterm Byte 260
Mosaic Disintegration 260
17 Scrolling and Intuition 263
Searching The Copper List 265

Mastering Amiga Programming Secrets
[eV D e e i Y € Y e T Y G T T

The Scroll Routine 266
Some Example Code 268
The Downward Scroll 270
18 Boot Code and the TrackDisk Device 273
The BOOt SECtOIS . .ot v vttt e e e e 274
Opening The Trackdisk Device 276
Reading From The Trackdisk Device 280
Writing To The Trackdisk Device 280
Getting The Drive GeometryData 280
Custom BootCode, 281
Producing The Code 282
Putting It All Together 289
19 Some Extra Programming Tips and Tricks 295
When [t All GoesWrong 299
Helping Yourself 300
20 Parting Advice 303
Appendix A: The Warnier Diagram 307
Appendix B: More Program Design Notes 315
Describing The Output Set 316
The Input Set e 325
Diagram To Code Conversion 328
A More Sophisticated Translation 336
Byte Conversion Code -AnExample 340
Keeping It In Perspective 344
Glossary 345
Mastering AmigaGuides 359

Preface
]

This is an Amiga programming
book with a difference. It is
directed at Amiga users who
already have some experience
with the Amiga and who want to
take things a little further. The
aim is to explain a number of
programming tricks and methods
that will not only stand you in
good stead as you progress down
the road to Amiga programming
literacy but additionally to
provide food for thought along
the way. You, the reader, are
Preface expected to be C literate and to
have some knowledge of how
Amiga programs are written.
That includes things such as
opening and using run-time
libraries, setting up screens and
windows, reading gadgets and so
on, all of which are amply dealt
with in most introductory Amiga
C books. Most of the code is
written for the C programmer
and I've used ANSI style C
throughout. All the code has
been written and tested using the
brilliant SAS C development
system. Re-working the code for
other compilers will not, in most
cases, be a major problem
providing you understand the
ideas behind the code. I've
concentrated on explaining the
underlying ideas in detail - code
reworking (to suit compiler X, Y
or Z as the case may be) is
something which, if deemed
necessary, | leave to you. In the
main the code is compatible with
Release 2 onwards although
some of the programs will run
under AmigaDOS 1.3.

Needless to say as an Amiga C
programmer you are expected to
have access to the official
include files and to be generally

Mastering Amiga Programming Secrets
e P o e S VW s VO R 2

aware of how they are used. The best way to learn how to get the
maximum benefit from the Amiga include files is to look at them,
use them, and think about them - slowly but surely you will learn
to find your way around them and, with practice, learn to use them
in the way Commodore intended. If you are new to C you have a
golden opportunity to study them in detail - make the most of this
opportunity. The effort which has gone into them is considerable
and, along with examples from the world of UNIX and the
mainframe, these Amiga system include files are amongst the best
header files ever written!

Some sections of the book, such as the chapter on mixed coding,
include 680x0 assembler code. If you absolutely hate low-level
coding then feel free to ignore the relevant parts of the text. If you
don’t — don’t! Either way — use the book as a way of gaining insight
into the Amiga’s O/S, as an advanced C book, or just to latch onto
all manner of hopefully interesting Amiga coding tricks. Along the
way [I've dealt with things like passing Exec messages between your
own programs, getting one program to control another, flashing
colours, colour cycling and colour shading tricks. I've also provided
some MIDI related programs to keep the musicians amongst you
happy.

On a very few occasions I've used diagrams called Warnier diagrams
to illustrate the logic behind a piece of code. Because these
diagrams may not be familiar to you I have included a couple of
appendices that illustrate both the conventions and use of this
powerful program design tool. What I've not attempted to do is
force my own ideas about program design techniques on you, so in
the main you’'ll find that text and code examples will be the primary
vehicle of explanation. Do remember though that program design is
an important first step in all non-trivial programs - Amiga and
otherwise!

Although most of the topics are relatively self-contained it is
probably best to work through the book chapter by chapter because
later chapters usually assume that the material previously
presented is understood. All that remains now is for me to thank
you for buying the book, and to wish you a pleasant journey
through its contents.

PAO January 95

Introduction

All programmers have their own
idiosyncrasies when it comes to
coding style and | am certainly no
exception to this. My ideas on
what is right and what is wrong
codewise, whilst doubtless being
in broad agreement with the ideas
of many other coders, will
probably contain a variety of
elements which will seem strange
when first encountered. Having
said that one of the idiosyncrasies
that I have is that I like code to be
as well structured and as
readable as possible, so in this
respect my style will hopefully
make the examples easier to read
rather than harder.

You will pick up a variety of style
points as you work through the
book but it will help initially to
have some understanding of the
conventions | tend to use. To
start, here are some notes about
my approach to C coding. C of
course is a free format language
which neither forces you to write
intelligible code or prevents you
writing unintelligible code. This
means that it's largely up to the
programmer to adopt style
conventions which lead to the
creation of programs that are
understandable.

In the main [do try to stick to my
own guidelines but not to the
point where adherence becomes
counter-productive. You'll find me
using i, j, k etc, for loop variables
just like most other
programmers. Similarly there are
times where fully explicit variable
names end up too long to be
practical - so shortened names
have to be used. In short the
guidelines [adopt are just that -
guidelines, not rigid restrictions!

Mastering Amiga Programming Secrets
PRSI F 20 0 e S o N o e S Dl O A =i i i L 0 52

For the most part all that is needed is a common-sense
understanding of the usefulness of such consistency.

Whilst on the subject of style and conventions, I firmly believe that
the adoption of reasonably methodical in-line documentation pays
handsome dividends. Occasionally you will however find pieces of
example code which are devoid of any significant comments - the
reason is usually that | have already explained the underlying ideas
in the accompanying text.

One area where it is usually necessary to deviate from any self-
imposed conventions is when dealing with system defined
functions and variables. System definitions should always be used
as defined and never altered - that way other Amiga programmers
reading the code will understand what’s going on. Anyway enough
of these general lectures, here are the conventions which I both
recommend and use:

1. Use understandable names for variables and functions - eg
CreateTimerRequestBlock().

2. When creating #define macros, always use uppercase labels -
€g
#define QUIT 18

3. Capitalise the first words of function calls- eg
OpenSerialDevice(), DoNothing().

4. Prefix global variable names with g_as in
g_exit_flag!

5. Add a_p suffix to variables which represent pointers.

6. Use uncapitalised lowercase for variables and separate the
individual words of variable names using underscores - eg

g_serial_request_p.
7. Partition individual routines using
/* */
lines so that the various sections of code can be clearly identified.

Adopting conventions such as prefixing global variables with the
character g_ and suffixing pointer variables using _p, enables the
type of variable to be implied from its name. So, code which reads:

g_exit_flag=FALSE; /* clear exit flag - user has decided
not to quit */

is to my mind a much preferred alternative to code which reads like
this:

xit=0; /* clear global exit flag - user has
decided not to quit */

Such conventions do of course have but one purpose — to make life

A Coder’s Introduction
—

much easier for both myself and anyone else who may need to
examine my code. For instance, a variable with the name
g_window_p implies that the variable being dealt with is a pointer
variable which has been declared as a global. In other words it’s a
pointer which exists during the whole lifetime of the program, and
can be accessed from anywhere in the program without needing to
be passed as a parameter.

Other Important Rules

My conventions have nothing to do with any official guidelines but
plenty of other rules and suggestions exist for coders in that area
and one of the main ones concerns the checking of system calls.
The Amiga is a multi-tasking machine and because of this there is
never any guarantee that a system call will be successful - a
memory allocation call could fail if some other application has
previously grabbed all available RAM. Similarly a request for use of
the serial device could fail (if some other program has previously
been granted exclusive access). Because of these eventualities there
are three rules which Amiga programmers must always obey:

1. Always make sure you get what you ask for!

2. Always give back to the system any memory, device, or other
facility which you explicitly acquire!

3. Always provide a robust error path so that if the system
cannot provide the required facilities your program closes
down in a proper fashion.

I have, incidentally, got some interesting approaches to error path
handling that we’ll be dealing with in the next two chapters. For the
moment though, since there are a number of other generally
accepted rules and guidelines which Amiga programmers should
follow, I thought it would be useful to gather the most important of
them together for easy reference:

1. If you need to access a system structure that may be shared
between other tasks remember to lock out other tasks (eg by
forbidding multi-tasking). This will prevent other tasks
attempting to change the structure whilst you are in the
middle of looking at it.

2. Never make assumptions about memory, system
configurations (eg the presence of particular drives or device
names), or the contents of system structures which are
designated as private. Do not for instance assume that
particular library bases or system structures will always exist
at a particular location. Above all never call ROM routines
directly.

3. The Amiga’s operating system does not monitor the size of a
programs stack. Many compilers however allow you to add

Mastering Amiga Programming Secrets
)

stack checking code to the compiled application code -
although such checks slow the program down they are useful
particularly during development of recursive routines which
may become deeply nested.

e Remember that any data which is to be accessed by the
Amiga’s custom chips (bitplanes, image data, sound samples
and so on) must be placed in chip memory.

¢ Do not use poll based loops to wait for external events. The
system has methods for allowing a task to sleep by Wait()ing
on particular signal bits - use them. Similarly you should not
use software delay loops for creating timing delays.

* Do not disable either interrupts or multi-tasking for long
periods of time.

* Do not access the hardware directly.

* Do not tie up system resources unnecessarily. For example,
if your program does not need constant use of a printer then
only open the printer device when the program actually needs
it and close it as soon as possible. That way other programs
will also be able to use the printer device.

¢ Get into the habit of checking for memory loss during
program development. Programs should not continually eat
away at the available free memory although there are times
when an apparent free memory loss may occur the first time a
program runs - but - start to panic if a similar loss occurs
when the program is then run for the second time!

¢ All non-byte fields must be word aligned.

¢ All address pointers must be 32 bits. Do NOT use the upper
8 bits for data.

* Do not use self-modifying code.

e Custom chips registers are read only or write only. Do not
write to read only registers and do not read from write-only
registers.

There are also a few guidelines aimed at the assembly language
programmer:

¢ System library functions must be called with register A6
holding the library or device base. Libraries and devices will
assume A6 is valid at the time of such a function call.

* Registers DO, D1, AO and Al are scratch registers and their
contents must be considered lost after a system library call.
The contents of all other registers can be assumed to be
preserved.

¢ System functions that return a value may not necessarily
affect the processor’s condition codes.

A Coder’s Introduction
|

e Do not use a CLR instruction on hardware registers which
are triggered by access because it can cause the hardware
register to be triggered twice. Instead use MOVE(.size)#0,
location instead.

e Do not use the ‘MOVE SR’ instruction. If you wish to get a
copy of the processor condition codes use the Exec library’s
GetCC() function.

e Do not use the TAS instruction on the Amiga. Direct Memory
Access (DMA) can conflict with this specialised instruction.

OK that’s enough of conventions and ground rules - it's now time to
start looking at some coding tricks.

Mastering Amiga Programming Secrets
1

2:

Coding those
All -
Important
Abstract
Data Types

You're going to be hearing a lot
about the Abstract Data Type
(ADT) in this book and for a very
good reason - ADTs provide some
very real benefits to the
programmer because they allow
programming to be done at a
conceptually much higher level.
Codewise you may find this stuff
a bit of a headache at first, but I
suspect that when you see how
these techniques are used in later
chapters you'll come back to this
topic with a renewed interest that
will then last forever.

So what is an ADT? Well the term
abstraction refers to the process
whereby details at some
particular level are discarded and
only the main features of interest
are considered. This in itself is no
big deal and even in everyday
conversation we continually
abstract. Peter may well be a blue
eyed six foot tall insurance agent,
married with two children, who
drives a grey Y registered 3 litre
car which has four wheels, three
of which are currently inflated to
the correct pressure of 26 psi. but
if you are just trying to convey
the notion that Peter’s car has a
flat tyre then most of the above
information is irrelevant - we all
know that the simple phrase
“Peter has a flat tyre” will do the
job perfectly adequately.

In everyday conversation
excessive detail tends to obscure
any points being made and
abstraction here serves a useful
purpose - it protects us from
having to deal with too much
information. The same
philosophy applies to technical
discussions and, notwithstanding

Mastering Amiga Programming Secrets
| B s RS R L W DB TR B BN AR WA T WA S R el v

the fairly manageable obstacle of having to come to terms with
specialist jargon, the result of using well defined terms for common
complex operations is usually an overall simplification of the
communications process.

Procedures, functions and subroutines are, in the computing world,
abstractions of a different sense. Here potentially complex sets of
operations can be described and used using just a name, a few
parameters, and some details about the effect produced. Again such
abstractions have many advantages. By defining functions which
reflect the structure of a problem being solved a C programmer can
not only minimize the cluttering of their thought processes with
excessive detail but, by using what are effectively functional
building blocks, can tackle the problem-solving situation at a
significantly higher level.

The same principles apply to data items as well. Floating point
numbers, strings etc., are all data types which provide us with
similar abstraction orientated benefits. At the assembler/machine-
code level all data items consist of bits, bytes, or groups of bytes
but most high-level languages allow the programmer to use a
number of more useful data types. These are objects of some
specified unit type which will have a number of associated, and
well defined, operations available. C’s integers, for example, can be
added, subtracted, multiplied and so on. As well as a selection of
basic data types most high-level languages usually provide
additional data item facilities. Namely they allow sets of data items
to be grouped together in some useful way. In C, arrays and
structures come to mind. The declaration:

int my_array[100];

for instance, allows us to store one hundred integers and refer to
them using an index which identifies the relative position in the
array. Again there are a number of operations, +, -, *, \, / etc, which
can be performed on the array elements. We can, and frequently do,
add additional ‘facilities’ to such definitions — we might for instance
write our own InitialiseArray() function which would set the
elements of some array to a user defined initial value.

To solve most problems we need, unfortunately, rather more data
structure facilities than general languages such as C can offer. It is
often useful to work with lists, stacks, trees, graphs and so on.
Some languages incidentally do indeed provide support for these
more complex structures - Lisp, for instance, has strong list
processing capabilities. Ideally it would be nice if general high-level
languages, such as C, also had such facilities built in but, for a
number of implementation reasons, this ‘in-built complex data
structure path’ has not been followed. One difficulty is that there is
usually no single efficient method for doing this - complex data
type implementations often need to be tuned to a particular

Coding Abstract Data Types
T T e T TR T T (L e B Y T,

problem. One thing is certain though - the definition of the
characteristics of such complex data structures can be made
without worrying about the implementation issues at all and it is
this pathway that leads us into the world of the Abstract Data Type
or ADT.

The ADT philosophy is essentially simple: by defining the
important characteristics, ie the properties, of an abstract data
structure, and identifying the allowable operations, we arrive at an
ADT definition which, together with its associated set of allowable
operations set (the ADT interface definition), becomes a ‘data
structure’ building block which can be used to solve problems. The
benefit of the ADT oriented approach then is that it allows the
programmer to use lists, stacks, trees etc, almost as easily as they
would use integers, floating point numbers and strings.

I'm not going to talk about the theoretical ADT issues. Instead I
want to look at the practical side of things. Why? Because ADTs, or
rather the real-life implementations of ADTs, are extremely useful
and [happen to be a firm believer in the view that the time for
understanding the theoretical arguments is after you have
developed a gut feeling for the benefits of ADTs, not before.

In most cases where a programmer chooses to use an ADT approach
it will be up to them to provide a suitably efficient implementation
in terms of the real data structures that a chosen language
supports. Pascal programmers are at an advantage here because
almost all existing ADT texts have opted for Pascal or Pascal-like
descriptions of ADT routines. Translation of textbook descriptions
of common ADT forms to real code is, for the Pascal programmer at
least, a relatively straighforward job. In the main there's less direct
help available for the C programmer but once the basic properties
of a given ADT are understood, writing the corresponding C code,
at least for the simpler ADTs, should not prove unduly difficult.

The Stack ADT

I'm going to kick off with a fairly simple ADT type, the stack, and
examine some implementation-orientated ideas (a stack, in case you
need reminding, is just a set of objects logically arranged in a Last-
In-First-Out order). The type of operations which can be usefully
associated with a stack structure is well known. There has to be
some way of defining and initialising a stack, of placing (pushing)
items onto the stack, and of retrieving (popping or pulling) them
from the stack. It might, for some purposes, be felt that other
facilities should be included. Perhaps it would be advisable to test a
stack to see if it is empty, or look at the top item of a stack without
removing it. Here things get very implementation/use dependent.
Looking at the top of a stack, for example, is not really a
fundamental operation because it could be done using a
combination of pop and push commands. If however an application

Mastering Amiga Programming Secrets
- __|

was going to need to frequently look at the top of a stack without
removing it the pop/push method, though clean in an abstract
sense, is unlikely to be favoured from a point of view of efficiency.

As far as implementation itself goes there are several options. One
way of implementing a stack is to use an array in conjunction with
a stack pointer variable as in figure 2.1.:

ARRAY SjPACE for five items

stack pointer
variable (sp=3)

Figure 2.1.

This is quite efficient, very easy to implement, and perfectly
adequate for many applications. An array and its related stack
pointer variable can be linked together using a C structure:

#define SIZE 5
struct stack {
int stack_pointer;
int items[SIZE];
};
which then allows the use of declarations of the type:

struct stack s;
Slightly more flexible arrangements, using unions, can allow
dissimilar objects to be stored on the same stack but this is not a
practice to be encouraged unless there is an over-riding reason for
creating mixed object stacks. Similarly the use of pre-processor
modifiable, unit types such as:

struct stack {
int stack_pointer;
STACKTYPE items([SIZE];

Coding Abstract Data Types
___|

coupled with #define based modifiable STACKTYPE definitions, are
frequently suggested as C solutions for generic ADT stack building.
These type of schemes are fine as far as they go, but they are
essentially all ‘define at compile time’ static solutions which can
produce a number of problems in practice. As far as array based
implentations are concerned stack overflow is of course another
danger which needs to be considered.

To see the benefits of more flexible paths it is best to consider
some potential uses of the stack ADT. Within a single program we
may want several stacks handling several different types of objects.
We may also want to have different types of stacks in existence at
different times. There are two other general issues to consider.
Firstly, we should be aiming to create a stack module that can be
used in any number of programs without being re-compiled.
Secondly, we should be aiming to create a module which hides any
implementation details from the programs which will use it — it
should in fact be sufficiently transparent to allow the possible
rearrangement of any of the internal underlying data structures
without it affecting the ADT/applications-program interface at all. If
for instance we opted for routines based on an static array stack
implementation, and then at a later stage wanted to swap to a
linked list dynamic memory allocation form, then we should be able
to achieve this change without it affecting any of the programs
using the ADT (other than the fact that the new stack ADT module
would have to be linked in place of the earlier one).

In the following example I've actually opted for a list based
approach using calloc()/free() calls to provide dynamic memory
allocation for the items being stored on the ADT stack. The only
limitation on stack size with this approach will be the amount of
available system memory.

Within the stack module the routines are based on two types of
structures. A stack descriptor structure contains a pointer to the
first item on a linked list of stack items (NULL if stack is empty),
and a value representing the size of the objects being placed on the
stack:

struct StackDescriptor {
struct StackItem *FirstItem;
UBYTE ItemSize;
};
Also defined is a stack item structure which contains a next item in

the stack list pointer, and a reference to the first byte of some
unspecified data item:

struct StackItem {

struct StackItem *NextItem;

Mastering Amiga Programming Secrets
R e A PR S S R e O A A DI e s e e e |

UBYTE Data[1]; /* actually user defined amount of data
*/
b
The code for the stack routines use these structures internally but
the definitions are not required to be either known nor used by
applications program using the module. In fact, as far as the stack
ADT user-interface is concerned, only five access routines are
available.

s=CreateStack(t) This initializes a stack suitable for storing items of type t
specified by the applications program and returns a pointer s to
the stack's descriptor.

e=PushStack(s,x) This stores itemn x on stack s and returns an error flag e that is
TRUE if an error has occured.

e=PopStack(s,x) This refrieves an item from stack s and places it in variable x.
Errors are signified by the returned error flag e being TRUE.

KillStack(s) This unloads and then removes the stack s from the list of
currently defined stacks. No return value.

f=StackEmpty(s) This tests stack s to see if it is empty and returns a flag f as TRUE
if there are no items on the stack.

Table 2.1. Stack access routines.

These calls are macros designed to create a slightly more friendly
interface to the user. You can get further details from the header
and source code listings which follow:

/*==*/
/*Listing 2.1: The stack ADT header file.

/* Source: Stack ADT header */
/i __ t/

typedef void STACK;

/* These macros are used to create a slightly more friend
ly interface to the user. They just remove the need for
explicit sizeof(), casting and address taking opera-
tions in the applications code. */

#define CreateStack(t) CreateStk(sizeof(t))
#define PushStack(s,x) PushStk(s,(UBYTE *)&(x))
#define PopStack(s,x) PopStk(s,(UBYTE *)&(x))
#define KillStack(s) KillStk(s)

#define StackEmpty(s) StkEmpty(s)

/* These are the prototypes for the underlying stack
access routines which do the real work. */

STACK *CreateStk (ULONG unit_size);

Coding Abstract Data Types
___|

void KillStk (STACK *descriptor_p);

BOOL PushStk (STACK *descriptor_p, UBYTE *data_item);
BOOL PopStk(STACK *descriptor_p, UBYTE *data_item);
BOOL StackEmpty (STACK *descriptor_p);

/* 3ttt -ttt */
/* SourceCode: Stack ADT routines */
/i __ t/

/* Notes: These routines allow a program to use a true
dynamic stack data structure without the knowing anything
about how it’s done. */

#include <types.h>
#include <stack_adt.h>
struct StackItem {
struct StackItem *NextItem;

UBYTE Data[1]; /* actually user defined amount of
data */

}s

struct StackDescriptor {
struct StackItem *FirstItem;
UBYTE ItemSize;};

STACK *CreateStk(ULONG unit_size)

{

struct StackDescriptor *stack_descriptor_p;

if (stack_descriptor_p=(struct StackDescriptor *)
calloc(1,sizeof(struct StackDescriptor)))

{
stack_descriptor_p->ItemSize=unit_size;
}
return((STACK *)stack_descriptor_p);
}
/* __ t/

void KillStk(STACK *descriptor_p)

Mastering Amiga Programming Secrets

{

UBYTE *dead_block_p; struct StackDescriptor
*stack_descriptor_p;

stack_descriptor_p=(struct StackDescriptor *)descriptor_p;
while (stack_descriptor_p->FirstItem)

{

dead_block_p=(UBYTE *)stack_descriptor_p->FirstItem;

stack_descriptor_p->FirstItem=stack_descriptor_p-
>FirstItem->NextItem;

free(dead_block_p);

}
free(stack_descriptor_p);
}
/* __ */

BOOL PushStk(STACK *descriptor_p, UBYTE *data_item)

{

BOOL error_flag=TRUE; COUNT i; struct StackItem
*new_item_p;

struct StackDescriptor *stack_descriptor_p;
stack_descriptor_p=(struct StackDescriptor *)descriptor_p;
if (new_item_p=(struct StackItem *)

calloc(1, sizeof(struct StackItem
*)+stack_descriptor_p->ItemSize))

{
new_item_p->NextItem=stack_descriptor_p->FirstItem;
stack_descriptor_p->FirstItem=new_item_p;

for (i=0;i<stack_descriptor_p->ItemSize;i++)

{
new_item_p->Data[i]=*data_item++;
}
error_flag=FALSE;
}
return(error_flag);}
/t __ */

BOOL PopStk(STACK *descriptor_p, UBYTE *data_item)

{
BOOL error_flag=TRUE; COUNT i; UBYTE *dead_block_p;

struct StackDescriptor *stack_descriptor_p;

Coding Abstract Data Types

stack_descriptor_p=(struct StackDescriptor *)descriptor_p;
if (stack_descriptor_p->FirstItem)

{
for (i=0; i<stack_descriptor_p->ItemSize; i++)
{

*data_item++=stack_descriptor_p->FirstItem-
>Data[i];

}
dead_block_p=(UBYTE *)stack_descriptor_p->FirstItem;

stack_descriptor_p->FirstItem=stack_descriptor_p-
>FirstItem->NextItem;

free(dead_block_p); error_flag=FALSE;
}

return(error_flag);

BOOL StkEmpty(STACK *descriptor_p)

{

BOOL empty_flag=TRUE; struct StackDescriptor
*stack_descriptor_p;

stack_descriptor_p=(struct StackDescriptor *)descriptor_p;
if (stack_descriptor_p->FirstItem) {empty_flag=FALSE;}
return(empty_flag);}

/t __ i/

The above routines have been written according to the basic jobs
they have to perform and no particular trouble has been taken to
maximize their efficiency. You will also see that in most routines I
have used a local variable to copy and re-cast the (void *) descriptor
pointer parameter as a StackDescriptor pointer. Here I just felt that,
because it avoided continual re-casting in order to use the structure
definitions this inefficiency just made the code that much easier to
read.

It is fair comment to ask why I did not opt for creating routines
which worked directly with StackDescriptor pointers instead of
opting for a generic form (void *). Here are the header and routines
again using just that approach.

/*Listing 2.3: A less satisfactory header file ADT

approach

/* 4t 4+t 3 3ttt -ttt */
/t __ */
/* Source: Stack ADT header for alternative routines */

Mastering Amiga Programming Secrets
S ST PTG S RN 832l 17 367 AR A B R A - RN izt |

/* Notes: This header contains structure tags that would
change if the underlying stack implementation
method changed. */

struct StackItem {
struct StackItem *NextItem;

UBYTE Data[1]; /* actually user defined amount of
data */

}s

struct StackDescriptor {
struct StackItem *FirstItem;
UBYTE ItemSize;

};

typedef struct StackDescriptor STACK;

/* These macros are used to create a slightly more friend
ly interface to the user. They just remove the need for
explicit sizeof(), casting and address taking opera
tions in the applications code. */

#define CreateStack(t) CreateStk(sizeof(t))
#define PushStack(s,x) PushStk(s,(UBYTE *)&(x))
#define PopStack(s,x) PopStk(s,(UBYTE *)&(x))
#define KillStack(s) KillStk(s)

#define StackEmpty(s) StkEmpty(s)

/* These are the prototypes for the underlying stack
access routines which do the real work. */

STACK *CreateStk (ULONG unit_size);

void KillStk (STACK *descriptor_p);

BOOL PushStk (STACK *descriptor_p, UBYTE *data_item);
BOOL PopStk(STACK *descriptor_p, UBYTE *data_item);
BOOL StackEmpty (STACK *descriptor_p);

tines.

/* E o o o ot o o o e o e o e e e | */
/* SourceCode: Alternative Stack ADT routines * /
/* __ */

/* Notes: These alternative routines also allow use of a
dynamic stack ADT. A change in the underlying
implementation method would however, because of
the visibility of the list oriented structure

Coding Abstract Data Types
e i e e e W it PR i e

definitions in the header file, result in the
applications programs having to be re-compiled
rather than just re-linked. */

#include <types.h>
#include <stack_adt.h>

STACK *CreateStk(ULONG unit_size)
{
STACK *stack_descriptor_p;
if (stack_descriptor_p=(STACK *)
calloc(1,sizeof (STACK)))
{

stack_descriptor_p->ItemSize=unit_size;
}
return(stack_descriptor_p);}
/t __ i/
void KillStk(STACK *descriptor_p)
{
UBYTE *dead_block_p;
while (descriptor_p->FirstItem)
{
dead_block_p=(UBYTE *)descriptor_p->FirstItem;

descriptor_p->FirstItem=descriptor_p->FirstItem-
>NextItem;

free(dead_block_p);
}

free(descriptor_p);

}

/* __ */
BOOL PushStk(STACK *descriptor_p, UBYTE *data_item)

{

BOOL error_flag=TRUE; COUNT i; struct StackItem
*new_item_p;

if (new_item_p=(struct StackItem *)

calloc(1, sizeof(struct StackItem *)+descrip
tor_p->ItemSize))

{

new_item_p->NextItem=descriptor_p->FirstItem;

Mastering Amiga Programming Secrets

descriptor_p->FirstItem=new_item_p;
for (i=0ji<descriptor_p->ItemSize;i++)

}
new_item_p->Data[i]=*data_item++;
}
error_flag=FALSE;
}
return(error_flag);}
/t __ */
BOOL PopStk(STACK *descriptor_p, UBYTE *data_item)

{
BOOL error_flag=TRUE; COUNT i; UBYTE *dead_block_p;

if (descriptor_p->FirstItem)

{

for (i=0; i<descriptor_p->ItemSize; i++)
{
*data_item++=descriptor_p->FirstItem->Data[i];
}

dead_block_p=(UBYTE *)descriptor_p->FirstItem;

descriptor_p->FirstItem=descriptor_p->FirstItem-
>NextItem;

free(dead_block_p); error_flag=FALSE;
}

return(error_flag);

BOOL StkEmpty(STACK *descriptor_p)

{
BOOL empty_flag=TRUE;

if (descriptor_p->FirstItem) {empty_flag=FALSE;}
return(empty_flag);}
/i __ t/

The problem is this — in this latter arrangement we are dependent
on the Stackltem and StackDescriptor tags being visible in the
header file and this header is used by the applications program. A
change in the underlying stack implementation mechanism would,
in all probability, affect these definitions and that would mean that
the applications programs themselves would have to be recompiled
if the stack ADT implementation mechanism was changed. In the

Coding Abstract Data Types
[isseiarica.s Cliaren 31 Vi S RAEIULY) =24 45N PLBR st 11525

arrangement used for the header/source provided initially such a
change could be kept totally transparent. Incorporating some newly
designed stack ADT would just involve linking the new ADT module
to the existing, already compiled, main applications code section.
[Note: When you are comparing the two sets of ADT header/sources
remember that the typedef definitions of STACK are not the same. |

The Routines In Use

This short example should give the general idea of how these
routines can be used. A stack is created for storing TEXT size
objects (actually chars), and the LIFO characteristics of the stack
ADT is then used to reverse a string:

/* __ */

/*Listing 2.5: A simple program to illustrate the use of
the stack operations.*/

/* EXAMPLE OF THE STACK ADT ROUTINES BEING USED TO REVERSE
A STRING */

#include <types.h>

#include <stack_adt.h>

main()

{

UBYTE i=0; TEXT x[]="This Is Just A Test Line";

STACK *mystack_p; /* declare stack identifier variable */

mystack_p=CreateStack(TEXT); /* ask for a stack storing
TEXT sized items */

while(x[i]) PushStack(mystack_p, x[i++]); /* store charac-
ters */

i=0; while(!(PopStack(mystack_p, x[i++]))) ; /* remove in
LIFO order */

KillStack(mystack_p); /* cancel the stack facility
(release memory) */

printf(“%ss\n",x); /* display reversed string */

A Taste Of Things To Come

If you've not come across ADTs before you probably wondering
what the pointis of all this apparent complexity. After all, with the
above example most C programmers could write a routine to
reverse the characters of a string using just a few lines of loop
code. The important things to note are that firstly my example dealt
with high-level stack operations (pushing and popping characters),
and secondly that even though the ADT code was using list

Mastering Amiga Programming Secrets

operations which were dynamically allocating all necessary memory
- my example code didn't need to worry about any of that type of
detail. In short by linking my stack ADT code to a program I'm able
to make stack operations available to the program without having
to code those operations from scratch. What we need now is a
larger, more Amiga-oriented example in order that the benefits of
the ADT approach can be put into perspective. It just so happens
that this topic is next on the agenda. '

Using an
ADT-Stack
for Dynamic
Amiga
Resource
Handling

Most Amiga programs, as you'll
doubtless already know, need to
obtain various types of system
resources in order to run. It
might be chip memory for
graphics images, use of hardware
such as the serial, or perhaps
access to things like the timer
device. No matter what facilities
are involved there is always one
snag as far as the Amiga
programmer is concerned - the
Amiga itself doesn’t keep track of
the resources being used and so
programs themselves need to do
this type of house-keeping. Why?
It's because when a program
terminates it is responsible for
handing back the things it has
acquired from the operating
system (O/S). Obviously memory
must be returned to the system,
devices must be closed and so on
because otherwise the poor old
0O/S is not going to know that the
program has finished with them.
Programs must not only ask for
the resources they need but must
check that such requests are
successful. Worse than that, the
order in which various closedown
steps are carried out is often
important — a program opening a
window in a custom Intuition
screen must; open the Intuition
library, open a screen and then
open the window. Many
operations like these can fail - a
program will not be able to open
a custom screen if some other
program had previously grabbed
all available chip memory.

Coding in small programs rarely
presents any difficulties but as
programs get to more realistic
sizes many more things need to

Mastering Amiga Programming Secrets
e R Y e A SRR R P SRS T S MO Bl 28 RN v |

be done. Screens, windows, device access etc - sometimes a
program may need to perform dozens of jobs before it is even up
and running and often resources will need to be allocated
dynamically, ie during the time the program is running. Consider,
for example, a program which uses a number of separate windows
(each with different menus). A user might activate one window and,
from the associated menu, select an option which causes the serial
device to be opened. Having done that the user might then have
second thoughts about what they were doing, switch back to the
main window, and quit the program. When terminating, the
program will need some way of knowing that the serial device was
open in order to close it.

Needless to say these types of considerations can obviously make
life for the Amiga programmer both messy and complicated. What
we really need is a scheme which can handle not only those initial
program setting-up operations, but one that is flexible enough to
allow any additional resources required to be allocated whilst the
program is running. In my early Amiga days | developed a static list
based technique to do this but a few years ago | came up with
another approach that provides more flexibility. It involves
something which, for reasons that will soon become patently
obvious, I call dynamic resource allocation.

Sounds tricky I know but the basic principles are easy enough to
understand. In fact the idea, as far as the logic itself goes, is almost
trivial because it replies on a stack data structure. Stacks of course
store things on a last in first out basis and what my scheme does is
ensure that any routine which successfully allocates or opens some
returnable or closeable system resource pushes the address of a
corresponding deallocation/closedown routine onto a stack.

To allow for allocation failures as the program runs | adopt the
convention of having all allocation routines return error numbers
that indicate whether they've succeeded or not. Providing these
conventions are followed the program can perform its closedown
operations by pulling those deallocation routine pointers from the
stack and executing the corresponding routines. By the time the
stack is empty all acquired system resources will have been handed
back. The beauty of this approach is that the stack automatically
deallocates things in the reverse order to the original allocation -
things which are allocated last get deallocated first (this is a good,
safe, general rule to adopt for all Amiga programs).

I use this type of approach in almost every Amiga program that I
write - in fact the code arrangements (which by now are well tried
and tested) allow me to create separate, and often re-usable,
allocator modules. This isolation, or modularisation, is an important
part of creating larger programs and I'll be using it in many of the
examples in this book. Because of this it's obviously necessary to

ADT Stack
T

spend some time outlining the approach so that you can
understand the framework being used in subsequent examples.

The first question that needs to be answered is this: How do we set
up the allocation/de-allocation code and get the right pieces of
code executed at the appropriate times? Let's start by looking at
some examples that show some typical operations. Listing 3.1
shows two routines which open and close the Intuition library,
listing 3.2 provides another example pair that create and remove a
window. Don’t worry unduly about the specific details here - it is
the overall theme that is important here, not the actual purpose of
the code:

/*Listing 3.1 - Intuition library opening and closing with
stack based resource tracking!*/

UBYTE OpenInt(void)
{
UBYTE error_number=NO_ERROR;
if(!(IntuitionBase=(struct IntuitionBase *)
OpenLibrary(‘“intuition.library”,INTUITION_VERSION)))
error_number=ALLOCATION_ERROR;

else {
g_function=Closelnt;
PushStack(g_resource_stack_p,g_function);
}
return(error_number);
}
/t __ t/
void CloselInt(void)
{
CloselLibrary((struct Library *)IntuitionBase);
}
/i __ t/

Listing 3.2 — Another set of allocation/deallocation rou-
tines which push a deallocation pointer onto the stack.*/

UBYTE CreateWindow(void)

{
UBYTE error_number=ALLOCATION_ERROR;

Mastering Amiga Programming Secrets
= A e RN PR L A SR S e G S e et |

g_window_p=0OpenWindowTags (NULL,
WA_Left,20, WA_Top,20,
WA_Width,WINDOW_WIDTH, WA_Height, WINDOW_HEIGHT,
WA_DragBar, TRUE,
WA_DepthGadget, TRUE,
WA_CloseGadget, TRUE,
WA_SmartRefresh, TRUE,

WA_IDCMP, IDCMP_CLOSEWINDOW | IDCMP_MENUPICK |
IDCMP_GADGETUP,

WA_Title, "General Testing Framework",
WA_PubScreen, g_public_screen_p,
TAG_END);

if (g_window_p)
{
GT_RefreshWindow(g_window_p,NULL);
error_number=NO_ERROR;
g_rastport_p=g_window_p->RPort;
g_function=KillWindow;

PushStack(g_resource_stack_p,g_function);

}
return(error_number);
}
/* __ t/
void KillWindow(void)
{
CloseWindow(g_window_p);
}
/t __ t/

Notice that the first of each of the two pairs of routines shown in
listings 3.1 and 3.2 are using a PushStack() function and in each
case the value being pushed, ie stored, is the address of the
corresponding deallocation routine (the second routine in each
listing). The net result is that, providing both of these allocation
routines are successful, both deallocation routine pointers will have
been placed on the stack. Further allocation routines will similarly
add the addresses of their closedown routines and so the stack
ends up holding pointers to all of the deallocation/closedown
routines that will need to be performed when the program
terminates. The good news now is that, irrespective of the number

ADT Stack
TR

of routines present on the resource stack, the complete
deallocation/closedown procedure can always be carried out with a
single line of code:

while(!PopStack(g_resource_stack_p,g_function)) g_func-
tion();

This loop removes a pointer to a deallocation routine and then
executes that function. It does this continually until the stack is
empty (I'll recap on my stack conventions again in a moment).

Amiga programs usually have to do quite a lot of things when they
first start up. Screens, windows, menus, gadgets etc, need to be set
up. To handle the execution of the, possibly large number of, initial
allocation routines used by a program | use a function pointer trick
- C routines have addresses which can be accessed and used much
the same as the address of a C variable. Because of this an array can
be set up which contains pointers to the allocation routines to be
executed. Here is an example controller array from a program that
controls the operation of 18 (9 allocation and 9 deallocation)
routines:

#define DISPLAY_COUNT 9
UBYTE (*display_list[])() = {
OpenInt,
OpenGraphics,
OpenGadtools,
LockScreen,
GetVisInfo,
CreateWindow,
CreateMenu,
CreateMenulLayout,
InstallMenu
};
The array identifies the set of routines that need to be executed at
startup and of course similar types of arrays can be used at any
point within a program where a number of successive allocations
need to be made. All that is needed now is some loop code which
will read through the pointer list and execute the corresponding

routines. Listing 3.3 shows one of my standard functions which
does the trick:

/t __ t/
/*Listing 3.3: The auto-allocator function.*/

UBYTE AllocateResource(UBYTE count,UBYTE (*1list[])())
{

Mastering Amiga Programming Secrets
e e e e g e e

UBYTE i, error_number;
for (i=0;i<count;i++)
{

if(error_number=1list[i]()) 4i=count; /* force exit
from loop */

}
return(error_number);
}
/t __ */

Making the Most Of Reusable Code

During these discussions you've probably noticed that I've taken it
for granted that Push/Pull type stack operations are available to my
allocation module. The bad news of course is that if you want such
stack facilities in C then you must either create them yourself or
borrow someone else’s code. What did | do when developing this
allocation technique? Well, | didn't borrow anyone else’s code. Nor
did I sit down to write new routines to provide stack operations.
What [did of course was to link my existing, already compiled,
abstract data type (ADT) stack module into the program and Bingo -
instant stack handling facilities became available. As code gets re-
used in this way it does of course, because it get thoroughly tested,
tend to become very reliable.

What you should note in the allocation code fragments provided so
far however is that I've only used those access functions
PushStack(), PopStack() etc, that form part of the stack ADT
interface definition. You should NEVER try to access the internal
routines of an ADT module - that would defeat the whole purpose
of developing an ADT in the first place. In fact when you examine
the source code for the programs which use this technique (which
you'll find on the disks which accompany the book) you will find no
references to the stack ADT internal structures, the underlying list
manipulation routines, or anything else. In short these internal
characteristics are of no consequence to the applications programs
wishing to use the ADT. All that a program needs to concern itself
with is the set of allowable ADT operations that have been defined.

When | wrote my stack ADT code | had, as mentioned in the last
chapter, a number of very specific requirements in mind: it was to
be possible to use any number of different stacks handling any
number of different object types, have different types of stacks in
existence at different times, use the module in any number of
programs without having to re-compile it and not be limited to
working within a fixed memory space, save that of the limit of the
system itself. Last but not least | wanted a module which could
easily be ported to different machines and ANSI C was the obvious
choice here.

ADT Stack
[P v == e

You'll notice incidentally that I chose to use vanilla C, ie ordinary
common or garden C code, for implementing my stack ADT rather
than the Amiga’s Exec list functions. This again was for reasons of
improved portability - if, for example | wanted to port my ADT code
to say an Atari Falcon or ST machine, I can do it easily. If I'd
implemented the ADT using Exec list facilities I'd have had to re-
write all of the list handling code!

Are you beginning to see the benefit of the ADT yet? In the chapter
2 example I was using the stack routines to store characters of a
string. In this latest use I'm using exactly the same code to store
pointers to C functions and this flexibility is one of the main
benefits of having ADT style code available. Equally important is
the fact that I'm able to re-use existing code, rather than worry
about writing stuff from scratch. To use the routines in my resource
allocation module all I had to do was include the header file
(stack_adt.h) into the program source, compile as normal, but link
additionally with the ADT stack object code module (stack_adt.o).

As I've already mentioned, a lot of the routines and code fragments
that I'll be discussing in this book will be provided on disk using
examples that use this allocation technique. The allocators for each
program will need to perform different functions but all will adopt
the overall layout that this chapter has dealt with. Because these
allocation modules are so fundamental it seemed a good idea to
provide one complete listing for reference. The following code
comes from a short Workbench oriented general program that I'll be
using as a framework for many of my examples:

/* B P S e e R o E R I] */
/*Listing 3.4: A Typical Allocator Module*/

/* Module name: allocator.c */

UBYTE AllocateResource(UBYTE count,UBYTE (*1list[])())
{
UBYTE i, error_number;
for (i=0j;i<count;i++)
{
if (error_number=1ist[i]())
i=count; /* force exit from loop */

}

return(error_number);

Mastering Amiga Programming Secrets
e ey e e e T e T T e SO Y T

UBYTE OpenInt(void)

{

UBYTE error_number=NO_ERROR;
UBYTE *s="intuition.library";

if(!(IntuitionBase=(struct IntuitionBase *)
OpenLibrary(s,INTUITION_VERSION)))

error_number=ALLOCATION_ERROR;
else {
g_function=Closelnt;

PushStack(g_resource_stack_p,g_function);

return(error_number);

void CloseInt(void)

{

CloseLibrary((struct Library *)IntuitionBase);

UBYTE OpenGraphics(void)
{
UBYTE error_number=NO_ERROR;

if(!(GfxBase=(struct GfxBase *)
OpenLibrary(“graphics.library” ,GRAPHICS_VERSION)))

error_number=ALLOCATION_ERROR;
else {
g_function=CloseGraphics;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void CloseGraphics(void)

{

CloseLibrary((struct Library *)GfxBase);
}

ADT Stack
—
e s e delesemmmelelelialsa s monaaa o m oo */
UBYTE LockScreen(void)
{
UBYTE error_number=ALLOCATION_ERROR;
if (g_public_screen_p=LockPubScreen(NULL))
{
g_viewport_p=&(*g_public_screen_p).ViewPort;
error_number=NO_ERROR;
g_function=UnlockScreen;
PushStack(g_resource_stack_p,g_function);

}

return(error_number) ;

void UnlockScreen(void)

{
UnlockPubScreen(NULL,g public_screen_p);

UBYTE CreateWindow(void)
{
UBYTE error_number=ALLOCATION_ERROR;
g_window_p=0OpenWindowTags(NULL,
WA_Left,20, WA_Top,20,
WA_Width,WINDOW_WIDTH, WA_Height, WINDOW_HEIGHT,
WA_DragBar, TRUE,
WA_DepthGadget, TRUE,
WA_CloseGadget, TRUE,
WA_SmartRefresh, TRUE,

WA_IDCMP, IDCMP_CLOSEWINDOW | IDCMP_MENUPICK |
IDCMP_GADGETUP,

WA_Title, "General Testing Framework",
WA_PubScreen, g _public_screen_p,
TAG_END) ;

if (g_window_p)

{
GT_RefreshWindow(g_window_p,NULL) ;

Mastering Amiga Programming Secrets
[t o o S e e e SO AN R LN P SR IS LR AT IR e A S U Y

error_number=NO_ERROR;
g_rastport_p=g_window_p->RPort;
g_function=KillWindow;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void KillWindow(void)
{

CloseWindow(g_window_p);

UBYTE OpenGadtools(void)
{
UBYTE error_number=NO_ERROR;

if (! (GadToolsBase=0OpenLibrary(“gadtools.library",GAD-
TOOLS_VERSION)))

error_number=NO_GADGTOOLS;

else {
g_function=CloseGadtools;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

}

/i- __ */
void CloseGadtools(void)

{
CloseLibrary((struct Library *)GadToolsBase);

UBYTE GetVisInfo(void)
{
UBYTE error_number=NO_ERROR;

if(!(g_visual_info_p=GetVisualInfo(g_public_screen_p,TAG_E
ND)))

error_number=ALLOCATION_ERROR;

else {

ADT Stack

g_function=FreeVisInfo;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void FreeVisInfo(void)

{

FreeVisualInfo(g_visual_info_p);

UBYTE CreateMenu(void)
{
UBYTE error_number=NO_ERROR;
if(!(g_menu_p=CreateMenus(menui,TAG_END)))
error_number=ALLOCATION_ERROR;
else {
g_function=ReleaseMenu;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void ReleaseMenu(void)

{

FreeMenus(g_menu_p);

UBYTE CreateMenuLayout(void)
{
UBYTE error_number=NO_ERROR;

if(!(LayoutMenus(g_menu_p,g_visual_info_p,TAG_END)))
error_number=ALLOCATION_ERROR;

else {

/* Function must be tested for success but
no deallocation operations are needed! */

}

return(error_number);

Mastering Amiga Programming Secrets
0 S 1 ST s PRI A o

UBYTE InstallMenu(void)
{
UBYTE error_number=NO_ERROR;

if(l(SetMenuStrip(g_window_p,g_menu_p)))
error_number=ALLOCATION_ERROR;

else {
g_function=RemoveMenu;

PushStack(g_resource_stack_p,g_function);

}
return(error_number);
}
/* __ */
void RemoveMenu(void){ClearMenuStrip(g_window_p); }
I* -

Controlling The Resource Allocation Process

So far I've explained about the way the pairs of resource handling
routines are set up, and described the controller array (the list of
function pointers) and controller routines used to define the initial
setting up procedures. In order to cause the inital allocations to be
performed we do of course have to explicitly call the allocator
function and I usually do this using a small module that I call
main.c (because it contains C’s main() function). Here's a typical
piece of example code:

/* 2ttt - -t -t -t -ttt */

/*Listing 3.5: Short modules like this are used to control
the allocation operations*/

/* Module name: main.c */

/* __ */
#define ALLOCATE_GLOBALS

#include "general.h®

extern struct NewMenu menui[];

#define DISPLAY_COUNT 9

UBYTE (*display_list[])() = {
OpenInt,
OpenGraphics,
OpenGadtools,
LockScreen,

ADT Stack
|

GetVisInfo,
CreateWindow,
CreateMenu,
CreateMenulLayout,
InstallMenu
}s
UBYTE *alert_message_p =
“\x00\x4A\x14"
“*x* RECOVERABLE ALERT - CANNOT RUN PROGRAM *****\x00\xO01"
"\x00\x4A\x24"

"Version 37 or upwards of the GadTools library is
required” “\x00\x01" "\x0\x4A\x34"

“** PRESS LEFT OR RIGHT MOUSE BUTTON TO CONTINUE *** *\x00"
smain(int argc, char *argv[])

{

UBYTE error_number=NO_ERROR;

if(!(g_resource_stack_p=CreateStack(void *))) error_num-
ber=NO_STACK;

else {
/* attempt to allocate resources: */

error_number=AllocateResource (DISPLAY_COUNT,dis
play_list);

if (error_number)
{
if(error_number==NO_GADTOOLS)
DisplayAlert(RECOVERY_ALERT,alert_message_p,80);
}

else error_number=AmigaProg();
while(!PopStack(g_resource_stack_p,g_function))
g_function();

KillStack(g_resource_stack_p);

}

return(0);

}

/* Logical end of program */

Mastering Amiga Programming Secrets
e T e P e e A T o R

Basically this module tries to create a stack ADT and if it succeeds
it then calls the function pointer list allocator function and if this
returns with a ‘no error’ indicator control passes to the main part of
the program - which in this example I've labelled as the
AmigaProg(). function. This function only ever returns when the
user has signalled that they want to quit and so at this point the
function pointer stack is emptied as the deallocator routines are
called, the stack is then deleted and the program terminates.

When you examine the source code on disk you’'ll see that the
program uses some Release 2 (version 37) library functions so it is
not going to run under Workbench 1.3 or earlier. Knowing that the
only likely reason for the program failing on startup is going to be
that someone is attempting to run the program on a 1.3 based
machine I've include a DisplayAlert() function that is called if a
gadtools allocation error occurs. This just informs the user that the
GadTools version 37 library is required to run the program.

The Intuition Angle

The Intuition related aspects of this chapter’s example code may
also be of interest to those of you who are new to Amiga coding.
The program uses a window that opens in the Workbench screen
and under Release 2 this screen has to be locked during the time a
window is set up and opened. Menus also have to be installed and
this must obviously only be done if the window itself is
successfully opened. Get use to the format of the allocator
functions. | use them a lot. For example the moment it is known
that the window has been sucessfully opened the address of the
appropriate window closing routine, KillWindow(), gets pushed onto
my resource handling stack. This ensures that it will be closed
automatically when the program finishes. [have incidentally opted
for using the GadTools Library rather than the older style Intuition
approaches and this is primarily for simplicity - things like menus
are far easier to set up using the GadTools arangements. You’'ll be
able to see this from the menu definition shown in listing 3.6. The
GadTools library is able to convert this description directly into the
menu that appears on the screen!

struct NewMenu menui[] =
Listing 3.6: A simple Gadtools menu definition*/

{
{NM_TITLE,"PROJECT ", 0 ,0,0,0,},
{NM_ITEM, "Quit to WorkBench®, *Q*,0,0,0,},
{NM_END, NULL, 0, 0,0,0,},
}s

ADT Stack
]

From Release 2 of the Amiga’'s operating system there have,
amongst other things, been new methods for opening screens and
windows which involve the use of tag lists. Many of these
operations can be performed in a variety of seemingly different
ways with much of the flexibility being provided primarily for those
developers who, compatibility-wise, are in the unfortunate position
of being stuck between a rock (the 1.3 O/S) and a hard place
(Release 2 and later).

Not everyone will encounter such problems. Given that the 1.3 user
base is likely to diminish fairly rapidly now as users upgrade and
models like the brilliant A1200 and A4000/030 make their mark,
many developers have wisely opted simply to provide (and
maintain) separate versions of their products. This latter approach
is also the one that most Amiga users will want to adopt with their
own programs because experience shows that once they’'ve working
with the new environment their interest in 1.3 coding will dwindle
rapidly! Nevertheless in order to appreciate some of the new system
function options (available from Release 2 onwards) it is necessary
to understand how Tag lists fit into the compatibility scenario.

As you'll doubtless know the Amiga header files contain templates
for vast numbers of system structures and these define the various
entities used by the system. If, for instance, you wished to open a
window in 1.3 (and earlier) you would create a NewWindow
structure, fill in the appropriate details, and then call the Intuition
library’s OpenWindow() function. In order to provide the Release 2
system enhancements however, some established operations, like
window opening, required additional parameters to be specified
and Commodore’s problem was to find a way to do this that would
minimise any compatibility upsets. In fact what they wanted to do
was come up with a solution that would eliminate the need to
extend existing system structures in future O/S releases altogether.
The approach that has been adopted is based on the use of arrays,
or lists of arrays, that contain self-identifying parameter values
(each parameter item consists of an identifier and a corresponding
‘real’ value). Since these lists provide a way of tagging additional
parameters onto existing O/S structures, they've been called Tag
lists. Where appropriate, newly devised library function calls look
for such items and use them (either in addition to, or as a
replacement for, any existing structure data they might have used
in the past). What does a Tagltem structure look like? If you look in
the Utility/tagitem.h header this is the sort of arrangement you'll
find:
struct TagItem {
Tag ti_Tag; /* Typedef’d as just another ULONG */

ULONG ti_Data;
}s

Mastering Amiga Programming Secrets
e e o g e B T e e P S TR

It’s just a pair of long word (four byte) values! The first provides a
32 bit Taglitem identity, the second a corresponding 32 bit data
value. Most tag identity values are context specific and in the
intuition.h header file for instance you will find all manner of
Intuition-related tag identities (eg WA_Left, WA_Top, WA_Width and
WA_Height are used to specify window position and size
information). A number of general tag item values have also been
defined and can be found, along with the Tagitem structure itself,
in the utility/tagitem.h header file. Here are the most common
general symbolic names you’ll encounter:

TAG_IGNORE Indicates that the associated data item should be ignored.
TAG_SKIP Skip this and the next ti_Data Tagltemns.
TAG_MORE Marks the end of one array and indicates that at least one other

Tagltem array exists. The ti_Data field points to the next Tagltem
array to be used.

TAG_END Signals the end of an array (i_Data is unused).

Table 3.1.Symbolic tag identity names.

It's important to realise that Tag lists have been adopted to, and
hopefully, solve the problem of adding additional parameters to
function calls once and for all. In short, from Release 2 onwards
they are an integral part of the system and the bottom line is that if
you're interested in getting into up-to-date Amiga programming you
MUST understand how they work.

So far I've been trying to paint a general picture about how and why
Tag lists came into existence. The bad news is that there are now
actually five different ways to write window opening code. For a
start, the programmer can set up an ExtNewScreen structure
containing a pointer to a tag list, and in this case the OpenWindow()
function call can be made in the usual fashion. Alternatively, the
OpenWindowTagList() function can be used and this has the
following prototype:

struct Window *OpenWindowTagList(struct NewWindow *,
struct TagItem *);

This latter routine can actually be used in two different ways:
Firstly, the originally required parameters can be specified, a la 1.3,
in a NewWindow structure with additional (Release 2 onward)
arguments being provided in a separate tag list. Secondly, a NULL
NewWindow pointer can be used coupled with a tag list that
contains all window opening parameters (only the non-default value
tags need be supplied).

That covers three of the approaches available for making a window
opening call. Unfortunately (or fortunately depending on your
viewpoint) two more variations exist based on the use of the

ADT Stack
E——

amiga.lib OpenWindowTags() function. Rather than passing a single
tag list pointer this function expects to get its tag parameters from
the stack (along with a NewWindow pointer). Don’t panic, the
amiga.lib function stub does all this automatically and, from the C
coders viewpoint, the only difference when using this routine is
that the various values are specified as arguments of the function
call using this type of scheme:

struct Window *OpenWindowTags(struct NewWindow *, tag id
and value pairs...)

Again the NewWindow pointer can be NULL so, if you want to use
tag based parameters exclusively, you can.

Another area of Intuition-related code which may be of interest to
less experienced coders concerns the handling of gadget and menu
events passed back to the program from Intuition. This type of
code may look frightening when you first see it, but the basic
principles are very easy to understand. The program executes a
Wait() or WaitPort() which puts it to sleep (ie puts it on hold so that
it stops requiring processor time) until the user hits a gadget or
makes a menu selection. At this time it is Intuition that’s doing all
the event recognition work and having identified a particular user
action it sends the program an I[ntuiMessage. The first thing that
your program knows about all this is when Exec wakes it up and
tells it that the signal that it is waiting on has been satisfied. The
program then knows that a message has arrived and so it collects
the message, looks in the message’s Class field to identify its type,
and returns the message using a reply function (which lets the
sender know that the message has been dealt with and can be
deallocated or re-used). Having done all that it must then perform
whatever action is suitable for the particular message in question.
My normal approach to event handling is to use a preliminary
routine to identify the general type (gadget or menu) and then
deliver each class of message to an appropriate handler routine.

Project Management

Once you start writing programs that involve many different
modules and header files actually looking after the contents of
those files becomes a headache in its own right. There are three
quite important topics that ought to be mentioned here because
they are standard approaches which almost all established C
programmers use on all machines. Firstly, there is the problem of
defining and declaring variables. One program module can use
variables defined in other modules providing ‘extern’ references are
included in the module wishing to use them (to let the compiler
know that the variables are declared elsewhere). Variables must of
course be declared normally in just one file (so that memory can be
allocated for storage) but there is a sneaky #ifdef C pre-processor

Mastering Amiga Programming Secrets
D e S A e I T e AR A 52

trick available that lets you use the same header file for both
declaring and externally referencing a set of variables. The
fragment shown in listing 3.7 (which comes from the example’s
general.h file) will only generate the extern reference if
ALLOCATE_GLOBALS is not defined. By defining this value at the
start of just one of the file modules all the necessary variables are
declared and all other modules end up with the extern form
statements as is needed. The benefit? A single file serves both
declaration and external referencing purposes and this makes for
substantially easier file maintenance.

/*Listing 3.7: A useful header file pre-processor trick in
action*/

/* part of general.h */
#ifdef ALLOCATE_GLOBALS
#define PREFIX
#else
#define PREFIX extern
#endif
PREFIX void (*g_function)();
PREFIX STACK *g_resource_stack_p;
PREFIX struct IntuitionBase *IntuitionBase;
PREFIX struct GfxBase *GfxBase;
The second issue concerns the avoiding of masses of magic
numbers embedded in the code. C’s preprocessor facilities can be
used to create header files that contain definitions of important
constant items. This both aids source code readability and makes it
easier to update values used across any number of files. Listing 3.8

gives a few examples but you’'ll find many more in the disk source
files.

/*Listing 3.8 Preprocessor #define statements can also
improve source code readabilty.*/

#define INTUITION_VERSION 33
#define GRAPHICS_VERSION 33
#define GADTOOLS_VERSION 37

The third area of program file management interest is related to
how multiple module programs are physically put together. This
chapter’s program as already explained is formed from a collection
of independently programed object code modules which handle the
allocation and control of resources along with a variety of Intuition-
oriented tasks. As you now know a stack ADT module also has to be
linked to the program to support the abstract data type stack
operations used by the allocator module.

If the source code related to any one of these modules is updated

ADT Stack
|

(due to enhancements or bug fixes) then not only does that
particular module need to be recompiled but it must be re-linked
with the already existing unchanged modules in order to produce
the new version of the program. C Compilers provide ‘Make’
utilities which allow such file dependencies to be specified and the
SAS C offering is called ‘Smake’. In (most) simple cases a make file
script line consists of a target file name followed by the names of
any files upon whose contents it is dependent. Following this, on
the next line, come the actions that should be carried out when one
of those dependent files change.

In the example shown in listing 3.9 a change to the allocator.c file
would cause allocator.c to be recompiled to produce a new
allocator.o file that in turn triggers the re-linking of the example
program. The benefit of the utilities which allow make files to be
used is that once the required definitions are set up the
programmer never has to think about what files have to be remade
when things get changed. You, the programmer, make your desired
changes: and the ‘make’ utility automatically compiles just those
files that are needed and re-links all the files to provide a new
version of the project. Your compiler manuals will contain details of
the ‘make’ utilities provided with your compiler. Read them -
needless to say ‘make’ files become important as projects get larger!

/*Listing 3.9: The SAS C makefile for this chapter’s exam-
ple program.*/

Test: main.o allocator.o amiga.o

sc:c/slink FROM LIB:c.o "main.o" "allocator.o" \
"amiga.o" "stack_adt.o" \

TO Test LIB LIB:sc.lib+LIB:amiga.lib

main.o: main.c general.h prototypes.h sc:c/sc
main.c
allocator.o: allocator.c general.h prototypes.h

sc:c/sc allocator.c

amiga.o: amiga.c amiga.h general.h prototypes.h
sc:c/sc amiga.c

Mastering Amiga Programming Secrets
[esinoras s e L e L e e e v

4:
A Flashy

Interrupt
Trick

The 680x0 microprocessors have
sophisticated interrupt
processing but, as far as the
Amiga programmer is concerned,
the processor interrupt facilities
fade into the background. To be
honest an in-depth knowledge of
68K interrupt handling doesn’t
actually help the Amiga coder
that much.

This statement may seem a
strange way to start a chapter on
Amiga interrupt coding, but it is
absolutely true. As an Amiga
coder you are unlikely to ever get
near to the real 600x0 interrupt
system. Why? It's because the
decoding/despatching of both
system and task-related
interrupts are handled at a much
higher level - it’s the multi-
tasking Exec system that you deal
with, NOT the 680x0 chip. Exec,
as one of its many jobs, supports
an interrupt management scheme
which allows many different
tasks to be requesting (and using)
interrupt facilities at the same
time. The processing itself
involves a complicated series of
actions involving the 4703 (Paula)
chip and a number of Exec
supervisor operations. The result,
however, at the end of the day is
simple: when the right interrupt
signal comes along Exec makes
sure that the appropriate piece of
code gets executed as though it
were a subroutine!

Interrupt processing on the
Amiga is an area which has not
received much exposure either in
magazines or the Amiga’s main-
stay reference books. The
Addison Wesley RKM Libraries
volume, probably provides the

Mastering Amiga Programming Secrets
T e S e Vg e N R Py PR L s P e s L]

best accounts but, although the ideas are well explained, little
tutorial help is offered. More importantly than that though there is,
from a practical viewpoint, a big chunk of the story missing. From
the beginner's viewpoint what is needed is an explanation of the
overall scheme of things backed up with some example code which
can help put things into perspective. What | want to do first
therefore is take a couple of examples that adopt a straightforward
approach and explain what's going on. You might, if you aren’t
familiar with mixed code programming, find it useful to read
Chapter 13 in conjunction with this chapter because it deals with
the nitty gritty details of how such code is put together.

Before we start on our interrupt trail it’s necessary to understand
that interrupts are serviced on the Amiga through the use of two
types of arrangements — interrupt handlers,and interrupt servers. A
handler is essentially a single routine which carries out exclusively
all processing related to a particular 4703 interrupt. A server on the
other hand allows for an interrupt signal to be shared, ie it allows a
number of routines to be tied to a particular 4703 interrupt.

I've opted for examples that use the Amiga’s Vertical Blanking
interrrupt. When the Amiga’s operating system is kicked into life,
Exec ties this interrupt to a server chain and out first job is to
arrange to add our interrupt routine code into this chain. The Exec
library offers a couple of system routines, called AddIntServer() and
RemintServer(), which allow a piece of interrupt code to be added or
removed from the system in a properly organised manner. Here are
some brief function details:

Function Name: AddIntServer()

Description: Add aninterrupt server to the system chain
Call Format: AddIntServer(interrupt_number, interrupt p);
C Prototype: void AddIntServer(ULONG, struct Interrupt *);
Registers: AddIntServer(D0, AQ)

Arguments: interrupt_numnber interrupt bit nurnbe interrupt_p pointer to
an initialized Interrupt structure

Return Value: None
Notes: See RKM manuals for additional details.

A Flashy Interrupt Trick
[P o i L R A G

Function Name: RemlntServer()

Description: Remove an interrupt server from system chain

CallFormat: RemlntServer(interrupt_number, interrupt_p);

C Prototype: void RemIntServer(ULONG, struct Interrupt *);

Registers: RemIntServer(DO, A0)

Arguments: interrupt_number - interrupt bit number interrupt_p - pointer to
an initialized Interrupt structure

Return Value: None

Notes: See RKM manuals for additional details.

The interrupt numbers are defined in the hardware/intbits.h header
file(or the equivalent assembly language include file
hardware/intbits.i) and for our vertical blank interrupt we use the
value INTB_VERTB (actually 5).The second parameter is a pointer
not to a piece of code but to a system Interrupt structure, which in
C looks like this:

struct Interrupt

{

struct Node is_Node;

APTR is_Data;

VOID (* is_Code)();
}s

It's this structure that Exec uses to provide a linked list of jobs
which must be done when the interrupt occurs. Basically an
Interrupt structure is an ordinary Exec Node with a couple of extra
items tagged on. You do incidentally need to know about the
contents of a Node structure because a number of its fields have to
be filled in before you can use the Interrupt structure. Here are the
necessary details:

struct Node

{

struct Node *1n_Succ; /* pointer to successor */
struct Node *1n_Pred; /* pointer to predecessor */
UBYTE 1n_Type; /* must set this to NT_INTERRUPT */
BYTE 1n_Pri; /* can be set from +128 to -127 */
char *1n_Name; /* points to a NULL terminated
string */

}s

The Node structure’s type, priority and name fields have to be set
up with sensible values, and the is_Code pointer must contain the

Mastering Amiga Programming Secrets
S O O e S DY uer

address of your interupt routine. The is_Data field is available
simply for convenience - Exec will pass anything you place in this
field directly to the interrupt routine using the 680x0’s Al register.
With an interrupt server chain the priority value will determine
where abouts in the server chain your routine will be placed
(normally you should leave the priority field as zero). Exec carries
out these interrupt jobs in order of their priority but it checks the
680x0’s zero flag before deciding whether to execute the next
server routine. The bad news here is that if the zero flag is NOT set
then Exec doesn’t bother executing any of the server routines
further down the chain! Needless to say - if you give your routine to
a high priority, and then forget to set the zero flag on exit, other
routines in the chain will not be executed. Vertical Blank servers
should therefore always return with the 680x0’s zero flag
deliberately set!

This is easy to do when your routine is coded in assembler but with
high-level languages such as C the approach tends to vary
depending on which compiler you are using. SAS C for instance
provides a function called putreg() that allows a value to be forced
into a 680x0 register and a putreg(REG_DO0,0) call appears to set the
680x0’s zero flag to a suitable (true) value. With other compilers
other functions may be specified or you may have to terminate the
interrupt routine using a return(OL) function.

Putting the Pieces Together

So far the basic ideas, given that a suitable piece of interrupt code
is available, are relatively straightforward: set up the required
Interrupt structure and use the AddintServer() routine to get the
code added to the jobs that are done every time a vertical blank
interrupt occurs. Just before the program terminates use a
RemintServer() call to remove the job.

The interrupt code itself should be written as a subroutine and the
general rule with all interrupt coding is that the code should be
kept short and fast. This is especially important on the Amiga
because a lot of housekeeping operations happen during the
Amiga’s interrupt times. One important thing to remember is that
you cannot assume that it is always safe to read global system
structures and so on because they may actually be in the middle of
being updated at the time your interrupt occurs. There are ways
around this although the most obvious, disabling the interrupts for
a short period of time, is not always the wisest course of action.
There are a few other gotchas to watch for as well - you cannot for
example use system calls which, either directly or indirectly, call
Exec’s own AllocMem() and FreeMem() memory allocation and
deallocation routines.

Everything I've talked about so far has involved the relatively
mechanical aspects of interrupt use, ie the adding and removing of

A Flashy Interrupt Tyick
o s in e e o R T S R s et

pieces of code from an interrupt server chain. What we now need to
do is look at some example interrupt code and here there are both
high-level and low-level ways of approaching the coding.

The High-Level C Approach

I'm going to start by sketching out the overall framework of some
interrupt code that just decreases the value of a global variable,
called g_delay, by one every time a vertical blanking interrupt
occurs. After doing this the routine will check to see if the value of
this variable has become zero and, if it has, it will reset it to an
arbitrary original value again. Here’s the code in question:

void _ saveds InterruptCode(void)

{
if (!(—g_delay))
{
g_delay=DELAY; /* reset original value */

}
putreg(REG_DO,0);

}

This example is Lattice/SAS C compiler oriented in that I've used
the _saveds keyword (needed because the interrupt code will be
entered directly) and the putreg() function to set the 680x0’s zero
flag. Other compilers will require different approaches and you’ll
need to check your own compiler documentation for these details.
To install the interrupt code is easy - you just initialise an Interrupt
structure and use the Exec AddintServer() routine like this:

void PatchOn(void)

{
/* initialise interrupt structure fields and link into
server chain... */

g_interrupt.is_Node.1ln_Type=NT_INTERRUPT;
g_interrupt.is_Node.1ln_Succ=NULL;
g_interrupt.is_Node.ln_Pred=NULL;
g_interrupt.is_Node.ln_Pri=0;
g_interrupt.is_Node.1ln_Name=NULL;
g_interrupt.is_Code=InterruptCode;
g_interrupt.is_Data=NULL;
AddIntServer(INTB_VERTB,&g_interrupt);
}

Removing the code from the interrupt job list is even easier:
void PatchOff(void)

Mastering Amiga Programming Secrets
B0 s e B At A S B0 ey i N et i 3

{
RemIntServer (INTB_VERTB,&g_interrupt);

}

As you’'ll realise from the above code the basic arrangement for
adding an additional piece of code to an interrupt server chain is,
in principle at least, reasonably straightforward. What throws most
people is getting the details right so it’'s important that the various
steps are understood within the context of a runable example. The
following example installs the interrupt routine described earlier
and then executes a loop which just looks at the contents of the
g_delay variable whilst the loop counts to 1000. No changes are
made to the contents of g_delay from within the main program but
as the contents are printed you'll see the value changing between 1
and 16. What's happening of course is that the interrupt routine is
changing the value of the g_delay variable and this should be proof
enough that the interrupt code has been installed into the vertical
blanking server chain.

/* S s s s s S ==================== t/

/*Listing 4.1: A runable interrupt code example*/

/* Program name: CH4-1.c */

/t __ 'ﬁ/
/* some includes... */

#include <stdio.h>

#include <exec/types.h>#include <dos.h>

#include <exec/interrupts.h>

#include <hardware/intbits.h>

#include <proto/all.h>/* some prototypes... */

void _ saveds InterruptCode(void);

void PatchOn(void);

void PatchOff(void);

/* some defines...*/

#define DELAY 16

/* some globals... */

UBYTE g_delay=DELAY;

static struct Interrupt g_interrupt;

/* __ */
main(int argc, char *argv[])

{

A Flashy Interrupt Tyick

ULONG i;

PatchOn();

for (i=0;i<1000;i++) printf("%d\n",g_delay);
PatchOff();

} /* Logical end of program */

void PatchOn(void)
{

/* initialise interrupt struct fields then link into
server chain... */

g_interrupt.is_Node.ln_Type=NT_INTERRUPT;
g_interrupt.is_Node.1ln_Succ=NULL;
g_interrupt.is_Node.ln_Pred=NULL;
g_interrupt.is_Node.ln_Pri=0;
g_interrupt.is_Node.ln_Name=NULL;
g_interrupt.is_Code=InterruptCode;
g_interrupt.is_Data=NULL;
AddIntServer(INTB_VERTB,&g_interrupt);

}
/* ..
void PatchOff(void)
{
RemIntServer (INTB_VERTB,&g_interrupt);
}
/* ..
void _ saveds InterruptCode(void)
{
if (!(—g_delay))
{
g_delay=DELAY; /* reset original value */
}
putreg(REG_DO,0);
}
[B 8500 000 0058000000000 06000660 00050000000000800000006

Mastering Amiga Programming Secrets
N s DYy Sy e g D e P 7o)

Flashing Colours

The framework we’ve just developed is easily modified to produce
a simple flashing colour routine and their are two areas where the
code needs to be changed. Frstly we need to obtain the red, blue
and green colour values of the appropriate colour register. This
information can be obtained by using the graphics library
GetRGB4() routine and then doing some bit masking and shifting to
identify the individual values like this:

g_colour_value=GetRGB4(g_viewport_p->ColorMap,COLOUR_REG) ;
g_red = (g_colour_value&0xOF00)>>8;

g_green = (g_colour_value&0x00F0)>>4;

g_blue= g_colour_value&0xO000F;

Once these values are available all we need to do to make the
colour flash is alternately switch the colour in the register between
its original value and black. We set the colour to black by clearing
the colour register’s red, blue and green components to zero like
this:

SetRGB4(g_viewport_p,COLOUR_REG,0,0,0); /* set to black */
then, when the next change is due, we reset the colour register
using the original red, green and blue values:

SetRGB4(g_viewport_p,COLOUR_REG,g_red,g_green,g_blue);

The following listing is of an interrupt code module that does this
and you’ll see that a global toggle variable is being alternately set
and cleared in order to allow the right SetRGB4() call to be made. On
disk you’ll find this module linked into a program whose general
framework is based on the example outlined in Chapter 3.

/* =S=== */
/*Listing 4.2: A simple colour flashing program*/

/* Module name: interrupt.c for ExampleCH4-2 */

#include <exec/types.h>

#include <dos.h>

#include <exec/interrupts.h>
#include <hardware/intbits.h>
#include <proto/all.h>

#include "general.h®

void __ saveds InterruptCode(void);
#define COLOUR_REG 3

struct Interrupt g_interrupt;
UWORD g_colour_value;

A Flashy Interrupt Trick
1

UBYTE g_red, g_green, g blue, g toggle=FALSE;
void PatchOn(void)

{

/* set delay value and read colour reg values: */
g_delay=DELAY;
g_colour_value=GetRGB4(g_viewport_p->ColorMap,COLOUR_REG) ;
g_red = (g_colour_value&0xOF00)>>8;

g_green = (g_colour_value&0x00F0)>>4;

g_blue= g_colour_value&0x000F;

/* initialise interrupt struct fields: */
g_interrupt.is_Node.ln_Type=NT_INTERRUPT;
g_interrupt.is_Node.ln_Succ=NULL;
g_interrupt.is_Node.ln_Pred=NULL;
g_interrupt.is_Node.ln_Pri=0;
g_interrupt.is_Node.ln_Name=NULL;
g_interrupt.is_Code=InterruptCode;
g_interrupt.is_Data=NULL;

/* and finally link code into server chain: */
AddIntServer (INTB_VERTB,&g_interrupt);

void PatchOff(void)

{

RemIntServer(INTB_VERTB,&g_interrupt);
SetRGB4(g_viewport_p,COLOUR_REG,g red,g_green,g_blue);

/* restore colours */

}

/i __ */
void _ saveds InterruptCode(void)

{if (!(-g_delay))

{
g_delay=DELAY; /* reset original value */

if(g_toggle)
{

SetRGB4 (g_viewport_p,COLOUR_REG,g_red,
g_green,g_blue);

g_toggle=FALSE;
}

Mastering Amiga Programming Secrets
e R e e s R e T e e T]

else {

SetRGB4(g_viewport_p,COLOUR_REG,0,0,0);
/* set to black */

g_toggle=TRUE;

}
}
putreg(REG_DO,0);
}
/i __ t/

The Equivalent Assembler Example:

For those of you interested in assembler coding here’s a similar
rough and ready flashing effect routine created using 680x0
assembler. It was assembed with Devpac and makes use of some
Devpac specific library access macros (such as CALLGRAF). When
using another assembler these calls would need to be replaced with
conventional library call code that explicitly specifies the
appropriate library base.

Providing you're happy with 680x0 assembler there’s little more to
mention except that in this example I've hard-coded the delay value
(rather than reading the contents of a global delay variable). The
overall principles of the routine and its use of the library function
calls for installing and removing the interrupt code and
getting/setting colour register values are exactly the same as for
the example already discussed. Notice however that when we are
working at 680x0 coding level it is very easy to ensure that the zero
flag is set before the interrupt routine terminates. We just use the
instruction:

moveq.1l #0,d0 ;set Z flag
Here’s the listing of the routine that you find on the program disk:

/*Listing 4.3: A simple 680x0 assembly language interrupt
colour flashing example*/

include exec/exec_lib.i
include exec/interrupts.i
include exec/types.i
include hardware/intbits.i
include graphics/graphics_lib.i
DELAY EQU 16
PRIORITY EQU O

XDEF _PatchOn

XDEF _PatchOff

XREF _GfxBase

XREF _g_viewport_p
XREF _colourtable

A Flashy Interrupt Trick

*Preserve a6, get colours and then set up the interrupt
*server node before adding to existing vertical blanking
*jobs. Structure is already defined in include files, so
*we can use the pre-calculated offsets:

_PatchOn: movem.1l a6,-(a7) spreserve
move.l #_colourtable,at
move.w 14(a1),do ;get colour
andi.w #$0F00,d1 ;isolate red

1sr.w #8,d1
move.b di,red
move.b do,d1 s;copy colour
andi.b #3$00F0,d1 ;isolate green
1sr.b #4 ,d1
move.b di,green
move.b do,d1 s;copy colour
andi.b #$000F ,d1 ;isolate blue
move.b di,blue
move.l #server_node,ail ;base address
move.b #NT_INTERRUPT,LN_TYPE(al)
move.b #PRIORITY,LN_PRI(al)
move.l #_colourtable,IS_DATA(a1l)
move.l #FLASH_CODE,IS_CODE(a1l)
moveq.1l #INTB_VERTB,d0 ;server node already
in ai

CALLEXEC AddIntServer sinstall
movem.1l (a7)+,a6 srestore
rts 1quit

X i h e e eececececeeceececeecrece e e e e e e, e e e e e e, et e e e e e e e e e e e, ... === t/
cnop 0,4

_PatchOff: movem.1l a6, - (a7) spreserve
move.l #server_node,al
moveq.1l #INTB_VERTB,dO
CALLEXEC RemIntServer
movem.1l (a7)+,a6 srestore
rts squit

Mastering Amiga Programming Secrets

FLASH_CODE: movem.l d2-d3/a6,-(a7)
;preserve registers
subq.b #1,count
bne FC1
move.b #DELAY,count
bchg #0,switch ;alternate value
beq CLEAR_REG
SET_REG: move.b red, d1 sprepare colours
move.b green,d2 ;for RGB4() call
move.b blue,d3
bra FCO
CLEAR_REG: clr d1 ;clear colours
clr d2 ;for RGB4() call
clr d3
FCO: move.l #7,d0 scolour reg 7
move.l _g_viewport_p,a0
CALLGRAF SetRGB4 sreset colour
FC1: movem. 1l (a7)+,d2-d3/a6 ;restore registers
moveq.1l #0,d0 ;set Z flag
rts
/* .. */-
server_node ds.1 IS_SIZE ,static declaration
count dc.b DELAY
red ds.b 1 ;space for storing
green ds.b 1 ;separated colour
blue ds.b 1 svalues
switch ds.b 1 sboolean flash switch

A Flashy Interrupt Trick
—

An Alternative Amiga-Oriented Solution

On some machines having a piece of code forcibly executed by
tying it to an interrupt can be the only way to get a piece of
secondary code performed whilst the main program is running.
Flashing colours and colour cycling tricks are two typical effects
that have frequently required interrupt-based approaches. As we've
now seen it is certainly possible to adopt these solutions with the
Amiga but is this the best way to tackle such jobs? To be honest the
answer is no — because these effects are not actually time-critical
enough to warrant their inclusion into the Amiga vertical blanking
server chain. Why burden an interrupt chain, that possibly already
has a great many important things to do already, by adding yet
another complete job? One solution to this dilema is, in principle at
least, simple. Instead of having all of the proposed interrupt driven
code attached to the server chain we instead just use a short
interrupt routine that sends a start doing something signal to
another process whenever an interrupt occurs. That removes most
of the additional pressure and leads us onto an area of Exec which
involves inter-task signalling.

But why stop there? At this point, bearing in mind that the Amiga
can multitask, we also need to ask ourselves whether it wouldn’t be
better to set up totally independent tasks for handling secondary
jobs like colour flashing and so on. For the everyday coding
problems that most Amiga programmers face, these multiple task
approaches turn out to be far more flexible than the corresponding
interrupt-based solutions. For two or more tasks to co-operate
sensibly they need to communicate and one way of doing this is to
use Exec’s signalling system. Since these arrangements are
important, they get a chapter all to themselves.

Mastering Amiga Programming Secrets
I T s S e s L e e o T g e G e T T

Using Exec
Signals in
Your Own
Programs

The Amiga’'s multi-tasking
operating system provides an
elegant inter-task signalling
system based on the use of sets
of signal bits that are stored
inside every program’'s task
structure. For each task Exec
allocates space for 32 bits of
these bits (ie one long word) - the
lower 16 bits are for use by Exec
itself but the upper 16 bits are
available for use by the task in
question. These signal facilities
are in fact an integral part of the
higher level Exec message
communications system upon
which things like the even higher
level Intuition IntuiMessage and
ARexx communications systems
are built. When dealing with
messages at these higher levels
the programmer, in most cases,
rarely needs to worry about how
the underlying signal bits are
allocated because Exec-oriented
amiga.lib calls such as
CreatePort(), Intuition library
functions etc, always handle the
nitty gritty details automatically.
We’'ll consider some message-
oriented ideas in the next chapter
but for the moment it is the
underlying signalling system that
is our main focus of interest.

Because the allocation, handling,
and deallocation of signal bits
tend to be handled automatically
they tend to remain hidden in the
background as far as Amiga
system resources are concerned.
This is a pity because they are
not only very useful but they are
extremely easy to understand and
the purpose of this chapter is to
convince you that this is so by
showing you a number of useful

Mastering Amiga Programming Secrets
A T A S A P TV S PRSIV BT~ PO SR i 4

signal based tricks. First of all though let’s start by taking a look at
the Exec functions that allow a task to set up and release a signal
bit:

Function Name: AllocSignal()

Description: Allocate a signal bit

Call Format: signal_number=AllocSignal(signal_number);
C Prototype: BYTE=AllocSignal(BYTE);

Registers: DO0=AllocSignal(D0)

Arguments: signal_number - either a specific signal number or -1 if
don't care

Return Value: allocated number for signal or -1 if function fails

Notes: Signals should be deallocated before the task terminates.

The actual allocation of user signals is extremely easy to code and
one important point is that it is you the programmer who decides
what the various signal bits are going to mean to your program. We
might for instance decide that bit 16 was going to be used as a
signal for a program to quit, ie terminate, and so we'd use a #define
preprocessor statement to create a suitable definition. When
requesting a specific signal bit in this way we can test that the
required signal was obtained directly like this:

#define QUIT 16
if(AllocSignal(QUIT)==QUIT)
{

/* signal available for use here */

}

All allocated signals have to be returned before a program
terminates and a FreeSignal() function is available for this purpose.
It is used like this:

FreeSignal(QUIT);

You'll notice that neither the allocation or freeing functions need to
know what task is involved. This is deliberate — the calls are task
specific and it is not possible to use them to allocate or deallocate
the signals of some other task.

Using Exec Signals
[P=nmsars semaeiin s s e

Function Name: FreeSignal()

Description: Free an allocated signal bit

Call Format: FreeSignal(signal_number);

C Prototype: void=FreeSignal(BYTE);

Registers: FreeSignal(D0)

Arguments: signal_number - signal number of signal to free
Return Value: None

Once a task has allocated a signal bit other tasks can set this signal
by using this Exec Signal() function and again the function is very
easy to use. To send the previously mentioned QUIT signal to a task
whose Task pointer is contained in the variable called child_task_p
we'd use this sort of code:

Signal(child_task_p, (1L<<QUIT));

Notice that this function does NOT use a signal bit number it uses a
long word, ie 32 bit, mask value (which I'll explain about shortly).

Function Name: Signal()

Description: Signal a task

Call Format: Signal(task_p,signal_mask);

C Prototype: void=Signal(struct Task * ULONG);

Registers: Signal(AO DO)

Arguments: task_p - pointer to the task to be signalled signal_mask - signals
to be set

Return Value: None

Notes: Tasks can be signalled at any time irrespective of whether they

are running, ready to run, or in a wait state. If the task is
currently waiting for one of the signals being set it will be made
ready to run and a reschedule will occur.

With the Amiga’s multitasking system it’s important for programs
not to use processor time unless really necessary. One common
example of when a program should not use processor time is when
it needs to wait for user input, eg waiting for a user to hit a gadget
or select a menu item. The standard procedure with Amiga
programming is to put the program to sleep until such time as
something of interest happens and the function which allows this
to be done is, for obvious reasons, called Wait():

Mastering Amiga Programming Secrets

—

Function Name: Wait()

Description: Walit for one or more signals
Call Format: signals=Wait(signal_mask);
C Prototype: ULONG=Wait(ULONG);

Registers: D0=Wait(D0)

Arguments: signal_mask - 32 bit mask of signals to wait for

Return Value: signals which caused the Wait() to be satisfied

Notes: This is a more generally useful function than Wait Port()
because it allows signals from different sources to be
combined.

Signal Bits And Masks

The important point with the Signal() and Wait() functions is that
they use a 32 bit mask value - not an 8 bit signal bit number as
used by AllocSignal() and FreeSignal(). The reason is due to the fact
that Signal() and Wait() are designed to work with multiple signals
and it is more efficient to provide a mask value rather that a series
of bit numbers. The difference between the two representations is
easily seen by looking at an example. Let’s take the QUIT signal that
we defined as bit 16:

bit 16 this is the mask
arrangement needed for
i signal bit16
\J

00000000 00000001 00000000 00000000

To convert the signal bit value to a mask we simply left-shift the
number 1 an appropriate number of times. In C we use the <<
operator to achieve bit shifting, so typical code might look like this:

#define QUIT 16

mask = 1L << QUIT; Wait(mask);
or simply:

#define QUIT 16

Wait (1L<<QUIT);

The Intuition programmers amongst you will doubtless have seen
the single line of succinct, but somewhat obtuse, code used in

Using Exec Signals
R T R T T e T o
many Intuition event handling loops:
Wait(1<<g_window_p -> UserPort ->mp_SigBit);
What this is doing is identifying the signal bit associated with an

Intuition message port, converting it from a signal bit number to a
32 bit mask representation, and then Wait()ing on that mask.

Some Task Signal Communication Mechanics

In order for one task to be able to signal another it needs to know
its address and Exec provides a Task search function, called
FindTask(), which allows this to be obtained. FindTask() returns
zero if it fails and so it is common for coders to combine the tasks
name search with a conditional test like this:

if(child_task_p=FindTask (“some task namez"))

{

/* if this is executed then task was found */

Function Name: FindTask()

Description: Find the address of a task's Task control block

Call Format: task_p=FindTask(task_name);

C Prototype: struct Task * =FindTask(STRPTR);

Registers: FindTask(DO Al)

Arguments: task_name - name of task to find or NULL to find yourself
Return Value; pointer to the task structure or NULL if not found

Putting It All Together

What’s needed at this point is some runable code and the next two
examples, CH5-1.c and CH5-2.c provide a framework that you'll
doubtless be able to use for further experimenting. Program CHS-
1.c is what you might call the main task and its job is to locate
program CHS5-2 and send it some signals. For example purposes it
uses a loop to transmit ten do something instructions, and then it
sends a QUIT signal which tells the program to quit. CH5-2 is to all
intents and purposes a child process. It allocates its signal bits and
then uses a wait loop to watch for the setting of its two allocated
signal bits. The loop exits as soon as a QUIT signal is detected but
until that time the program executes the instructions provided in
the loop code each time a PERFORM signal is received.

Mastering Amiga Programming Secrets
s N N T R R S N DN AR S TR I o s |

/*Listing 5.1: This program shows you one way to signal a
child process*/

/* Program name: CH5-1.c */

% e e e e eeeeeeeeaaeaaeaaana */
/* some includes... */

#include <stdio.h>

#include <exec/types.h>

#include <proto/all.h>

/* some prototypes... */

/* some defines... */

#define QUIT 16

#define PERFORM 17

main(int argc, char *argv[])
{
COUNT i;
struct Task *child_task_p;
if(child_task_p=FindTask(“CH5-2"))
{
for(i=0;i<10;i++)
{
printf("signalling child task to perform\n");
Signal(child_task_p, (1L<<PERFORM)) ;
}
printf(“signalling child task to quit\n");
Signal(child_task_p, (1L<<QUIT));

}
}
/'. __ */
/* BN Y */

/*Listing 5.2: This code illustrates how a child process
can Wait() until a suitable signal is received before
doing anything.*/

/* Program name: CH5-2.c - the child process */
/i __ */
/* some includes... */

Using Exec Signals

—

#include <stdio.h>
#include <exec/types.h>
#include <proto/all.h>
/* some defines... */
#define QUIT 16
#define PERFORM 17

/* some globals... */

R L R R P

main(int argc, char *argv[])
{
BOOL exit_flag=FALSE;
ULONG received_signals;printf(“started\n");
if(AllocSignal(QUIT)==QUIT)
{
printf(“quit signal bit allocated\n");
if(AllocSignal(PERFORM)==PERFORM)
{
printf(“perform signal bit allocated\n");
while(!exit_flag)

{

received_signals=Wait((1L<<QUIT) | (1L<<PERFORM));

if(received_signals& (1L<<PERFORM))
printf(“performing\n");
else exit_flag=TRUE;
}
printf(“quiting\n");
FreeSignal(PERFORM) ;

}
FreeSignal(QUIT);

ADT Stack Based Signal Allocation

In programs that use ADT stack resource allocation methods signal
bits can be allocated and deallocated as part and parcel of the
program setting up and closing down processes. The example CH5-
3 code identifies the Workbench screen and then uses the timer
device to flash the colour in colour register 3 (an arbitrary choice)

Mastering Amiga Programming Secrets
e ey L D e e o o T o T e]

using the colour identification and changing scheme similar to that
already discussed.The program looks for a QUIT signal from an
external program to tell it when to terminate and in this case the
signals have been set up in the allocator.c module. Some additional
signal bits (defined as ON and OFF) are, incidentally, also allocated
and deallocated but these are not used - they were included just tc
provide further examples of the type of code required. The
following pair of routines come from example CH5-3 allocator.c
module that you'll find on disk:

/t __ */

/*Listing 5.3: An example fragment from a typical alloca-
tor module*/

UBYTE AllocateQuitSignal(void)
{
UBYTE error_number=NO_ERROR;
if(AllocSignal(QUIT) !=QUIT) error_number=STARTUP_ERROR;
else {

g_function=ReleaseQuitSignal;

PushStack(g_resource_stack_p,g_function);

}
return(error_number);
}
/t __ */
void ReleaseOnSignal(void) { FreeSignal(ON); }
/i __ */

The overall plans of the main.c and allocator.c modules, use of the
stack ADT etc, will be familiar from earlier discussions but there
are a few areas of code that may be of interest in the amiga.c
module. Firstly, notice how the program finds the address of its
own Task structure by supplying a NULL task name:

self_p=FindTask(NULL);

The amiga.c module contains what you might call the real ‘guts’ of
the program and this uses a loop which firstly looks to see whether
a QUIT signal has been received and, if it hasn't, executes a delay
and then switches the colour register contents using the methods
described earlier. Because in this case we're not Wait()ing on a
signal, some other means has to be used to see whether the QUIT
signal has been set. I've done this by looking directly at the
tc_SigRecvd field of the program’s Task structure, so the basis of
the loop ends up looking like this:

while(! (self_p->tc_SigRecvd&(1L<<QUIT)))
{

Using Exec Signals
e e AL e e

/* do the colour flashing code */

}

Here’s the flashing code for the amiga.c module of example CH5-3
so that you can see the overall framework being used:

/* __ */

/*Listing 5.4: Part of the example CH5-3 code that you’ll
find on disk*/

/* amiga.c - child process code */
#include "general.h"
#define COLOUR_REG 3
UBYTE AmigaProg(void)
{
struct Task *self_p;
UBYTE error_number=NO_ERROR;
UBYTE red, green, blue, toggle=FALSE;
UWORD colour_value;
self_p=FindTask(NULL);
colour_value=GetRGB4(g_viewport_p->ColorMap,COLOUR_REG) ;
red = (colour_value&0xOF00)>>8;
green = (colour_value&0x00F0)>>4;
blue= colour_value&0x000F;
while(!(self_p->tc_SigRecvd&(1L<<QUIT)))
{
SetTimer (DELAY,0);
if(toggle)
{
SetRGB4(g_viewport_p,COLOUR_REG,red,green,blue);
toggle=FALSE;
}
else {

SetRGB4(g_viewport_p,COLOUR_REG,0,0,0);
/* set to black */

toggle=TRUE;
)

}

SetRGB4(g_viewport_p,COLOUR_REG,red,green,blue);
/* restore colours */

return(error_number);

Mastering Amiga Programming Secrets

When you run example CH5-3 you'll find the borders of the active
window on the Workbench will flash. To turn off the effect the
program needs to be sent a QUIT signal and program CH5-4 shown
in listing 5.5 is a short utility which does just that:

/* T P E R e E e e E P */

/*Listing 5.5:The test program that signals the child
process*/

/* Program name: CH5-4.c */

/* __ t/
/* some includes... */

#include <stdio.h>

#include <exec/types.h>

#include <proto/all.h>

/* some prototypes... */

/* some defines... */

#define QUIT 18

/t __ t/
main(int argc, char *argv[])

{

struct Task *child_task_p;
if(child_task_p=FindTask("Test"))

{
printf(“"signalling child task to quit\n");
Signal(child_task_p, (1L<<QUIT));

Aiming For A More General Colour Flashing Solution

Now that you've got to the end of this chapter I've a confession to
make - this chapter was really just a stepping stone to greater
things because understanding how tasks can communicate via
signal arrangements will hopefully make the issues discussed in the
next chapter a little easier to get to grips with. Task signalling has
many legitimate uses but these signals are effectively just a way of
setting Boolean type, ie single bit based, information which
obviously limits their usefulness as a general means of program
communication.

Using Exec Signals
[t et msalicatie Jateea e Ly i)

The examples were contrived to illustrate a point and we got away
with flashing Workbench screen colours because both processes
were able to identify the Workbench screen address and so
determine, and manipulate, the appropriate colour map. For
simplicity | hard coded the colour register information, and the
delay time, into the program doing the colour flashing but this
approach obviously lacks generality.

It would be far better if we could pass to the colour flashing
program details of which colour map to use, which register to flash,
what time delay value to use and so on. This is what the next
chapter is all about.

Mastering Amiga Programming Secrets
e Ty s e e S e e ey e e B G ST]

6:

Getting Your
Programs to
Talk to Each
Other

The inter-program communications
facilities used by ARexx, the
Intuition and Gadtools libraries
and so on have all been built
upon the general message-based
communications arrangements
provided by Exec. In this chapter
I want to look in detail at these
arrangements and show how the
messaging system can be used
within your own programs. By
way of example a background
program will be developed which
is able to create flashing effects
on another programs screen as
and when it is asked to do so by
appropriate messages. Because
the background process will
actually be kicked off, ie started,
by some main program that wants
to flash one of its screen colours
I'll be talking about the colour
flashing program as a child
process. In short the main
program will run the child
process and then send it
messages that give it the
information needed to produce a
specified flashing effect (the child
process will carry out these
necessary colour flashing chores
automatically, and quite
independently, from the main
program). Before the main
program terminates it will send a
message to the child process
telling it that it also should
terminate. The benefit of this
type of arrangement is flexibility
- a single flash program can be
used by all programs wishing to
create flashing colours.

Before examining the code in
detail however we need to know
something about the Exec
messaging system itself. Under

Mastering Amiga Programming Secrets
R]

the Exec arrangements, information can be sent from one task to
another by creating a data packet known as a Message structure and
then transmitting it (sending it) to its destination. Messages pass
between tasks using another Exec defined structure called a
MsgPort, more commonly called a message port or just a port. Ports
are basically software entities whose job, amongst other things, is
to act as a receiving station for messages. Before a program can
receive a message it must have allocated and initialized a suitable
mesage port.

Here’s the definition of a port as a C structure:

struct MsgPort {
struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;

struct Task *mp_SigTask;

struct List mp_MsglList;

}s
mp_Node is a standard Exec Node structure and mp_MsgList is an
Exec list structure used to create a linked list of messages
associated with the port. As new messages arrive they are added to
the end of the list. As messages are read they are taken from the
front (head) of the list. The mp_Flags field is used to indicate
various message arrival actions and mp_SigTask field identifies the
task to be signalled as messages arrive.

Adding Data To A Message Structure

Messages themselves are based on an extensible length structure
with the Exec defined fields being suplemented by additional user
defined data. Here’s the basic layout.

struct Message {

struct Node mn_Node;
struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

}s

The Node structure is used for port linkage, the mn_ReplyPort field
indicates which port the reply will be sent to (see discussion which
follows), and the mn_Length field indicates the total length of the
message. The real message data is always provided as an extension,
usually by defining a new structure in terms of a Message plus
other data. '

For our example we are interested in creating a program that can
handle the job of flashing the colour of a particular colour register
associated with a specified ViewPort. To do this we need to know

Programs Talking to Each Other
S T Y N T S S YO TR S ST SCCEW,

the address of the ViewPort, the frequency with which the colour is
to be flashed, and the colour register value. We also need a
command field so that, at the very least, the flash effect can be
turned on and off and the flash program told when to quit. This is
the message structure [chose to adopt for the example program:

struct FlashMessage {
struct Message flash_Msg; /* standard Message details */

struct ViewPort *viewport; /* will provide access to a
*

ColorMap*/
ULONG frequency; /* colour changes per minute */
UBYTE colour_reg; /* register to change */
UBYTE command; /* command to be executed */

}s

Now that we've seen what messages are in terms of physical blocks
of memory let’s look at how these structures are used If the main
program sends the child program a message it does so by using an
Exec system call known as PutMsg(). This adds the message into a
linked list of messages which are tied to the child program’s port
structure. The important point about this process is that the
message is not copied. In other words it is the memory block
associated with the main program’s message which is linked into
the list of messages present at the child program’s message port.
Technically this is known as queuing by reference and its main
advantage is that the very substantial overhead of creating local
copies of each and every message floating around the Amiga
system is avoided. In a sense then when the main program
allocates, initializes and then sends the child program some
message... what the main program is really doing is giving the child
program a licence to use part of its memory space.

Now this is all very well but the scheme presents a number of
potential difficulties. Let’'s go over the main program -> child
program message passing scenario once more to see what problems
can occur. The main program wants to send the child program a
message so it allocates some memory for a message, fills in the
appropriate details and then sends the message to the child
program using Exec’s PutMsg() function. (The main program will
need to know the address of the child program’s message port at
this time but a system call is available for finding such
information). By the time the main program’s PutMsg() call has
completed we've developed a quite dangerous situation: the main
program has allocated some message memory and at some stage it
is going to have to deallocate it, ie return it to the system free
memory pool. But: once the PutMsg() function has ‘sent’ the
message the backward and forward pointing Node fields of the
memory block containing the message will have been altered so

Mastering Amiga Programming Secrets
T A e A I L AT AT S TIE X T T DN =00 {3 3= |

that the message, is linked into the child program’s message list. If
the main program terminated, or decided for any other reason to
deallocate its message unit, serious problems would arise. In short:
the child program’s message list would become corrupt and the
system would GURU shortly afterwards!

What is needed is a convention which eliminates this type of
problem. The method that Exec has adopted is as follows: The main
program, in sending a message to the child process, is effectively
granting a temporary licence to the child to use part of its memory
space (that relating to the message). Once this licence has been
granted the main program should not interfer with the message
until it is safe to do so. How does it know when its message can be
re-used or discarded? Usually the child process will send the
message back to the main program using Exec’s ReplyMsg()
function. This later function links the message (with a suitable
reply ID marker) into the main program’'s message port and, when
the main program reads this, it knows that the message is finished
with.

The main program is then free to re-use that memory space as it
sees fit. Note that the main program in the above scenario, does not
reply to the message it receives — this is because the main program
was the originator of the message. Because the message originator
usually needs to be told when a message has been dealt with both
communicating programs need their own message ports — despite
the fact that, as in the above example, the passage of real
information is only going one way.

From a practical viewpoint there are a few things worth mentioning
about the routines you'll find described in the function detail box
outs. GetMsg() unlinks the first message from a port and after it has
been used the associated message is essentially free floating and
not pointer-linked into the message chain of that port. If the
program which receives a message subsequently executes a
ReplyMsg() then this of course ties that message into the message
list of the program which sent the message in the first place. This
has to be removed from the message list like any other message by
using the GetMsg() function.

Programs Talking to Each Other
1

Function Name: PutMsg()

Description: Send a message to a message port

Call Format: PutMsg(port_p, message_p);

C Prototype: void PutMsg(struct MsgPort*, struct Message *);
Registers: PutMsg(AO, Al)

Arguments: port_p - pointer to a message port message_p - pointer

to a message

Return Value: None

Notes: This function can singal tasks and cause software
interrupts to occur. The action is dependent on the flags
set in the mp_Flags field of the destination port (see
RKM manuals for further details).

Function Name: ReplyMsg()

Description: Send a message backto its reply port
Call Format: ReplyMsg(message_p);

C Prototype: void ReplyMsg(struct Message *);
Registers: ReplyMsg(Al)

Arguments: message_p - pointer to a message
Return Value: None

Notes: This function is a bit like PutMsg() in that it links the
message into a message port. To indicate that it is a reply
however this function places the NT_REPLYMSG flag into
the message’s In_Type field.

Function Name: GetMsg()

Description: Collect first message queued at message port

Call Format: message_p=GetMsg(port_p);

C Prototype: truct Message *GetMsg(struct MsgPort *);

Registers: DO GetMsg(A0)

Arguments: port_p - pointer to a message portReturn

Value: message_p - pointer to a message

Notes: This function does not wait. If a message is not available

it will return with a NULL value

Now if we add these details to the steps which occur as two
programs communicate we end up with this scheme:

Mastering Amiga Programming Secrets
[s e B Gl N e AN A M S T S | A LS Ikl ke

Main Program Child Process
1: Allocates memory for message

2: Fills in relevant field details

3: Sends Message using PutMsg()

4: Collects message using GetMsg()

5: Extracts data from message

6: Sends back message using
ReplyMsg()

T: Receives reply using GetMsg()
8: Re-uses/deallocates message

Table 6.1. Communication Scheme.

You may have noticed that although I have said that one program
collects the message that another program sends, nothing has been
said about how the receiving program knows that another program
has sent it a message. As you have probably guessed from the
material in the last chapter this is done using the Exec signalling
system. The good news for this chapter is that at the message
communications level the nitty-gritty details of signal allocation,
deallocation and management are handled automatically by the
Exec message support functions. So we don’t have to worry about
them!

The Use Of Multiple Message Ports

In theory at least it’s possible for a program to work with just a
single message port but this does not always lead to the best
results in practice. The reason is that as messages arrive at a port
they get queued up in FIFO (first in first out) order regardless of
importance. This can sometimes mean that a message of relatively
minor importance could be sitting, waiting for collection, whilst a
far more important message was queued up behind it. Usually the
delays in handling compound message streams can be kept low but
on occasion it might be necessary to open additional ports just for
handling messages of particular importance.

The general program framework being used for the examples in this
book makes use of an Intuition window that already has two
associated message ports - one is used by Intuition and the other
(the window’s User Port) is used for handling the IntuiMessage and
GadTool messages received by the program. To communicate with
the Flash program we’ll be opening another message port because
these messages will be easier to use if they come in as an isolated
stream of FlashMessages rather than being possibly mixed up with
other classes of message.

Programs Talking to Each Other
[et e A M TR T S PR R AR AR T
Setting Up A Message Port

In order for our main program to communicate with the child
colour flashing process, a message port is neeeded for the ‘I have
finished with the message’ reply messages that come back from the
child. Since Release 2 of the Amiga’s O/S there are both amiga.lib
and Exec functions available for creating and deleting message
ports and the pair of routines shown in listing 6.1 are the
allocator/deallocator functions for a reply port based on the Exec
style routines:

/* __ ﬁ/

/*Listing 6.1: Functions to allocate and deallocate a
reply port in the main program.*/

UBYTE CreateReplyPort(void)
{

UBYTE error_number=NO_ERROR;
if((g_reply_port_p=CreateMsgPort())==NULL)
error_number=STARTUP_ERROR;

else {
g_function=DeleteReplyPort;

PushStack(g_resource_stack_p,g_function);

}
return(error_number);
}
/t __ */
void DeleteReplyPort(void){DeleteMsgPort(g_reply_port_p);
}
/t __ */

Sending a Message

The routine that provides flash control within the main program is
going to revolve around the use of just four commands -
FLASH_SETUP, FLASH ON, FLASH_OFF and FLASH_QUIT. Of these the
first is used only by the main program to indicate that the message
needs to be initialised, the remainder are real commands that need
to be passed to the external child process that will be doing the
colour flashing operations. Listing 6.2 shows a rough plan of the
routine that will be used. Listing 6.3 shows the routine in detail
(notice that in this example a static structure declaration - static
struct FlashMessage flash; - has been used to create the
FlashMessage).

/t __ */

/*Listing 6.2: Skeleton of a routine for sending child
process a ‘flash’ message.*/

Mastering Amiga Programming Secrets
e R e e e e T U o S S L e e |

UBYTE Flash(UBYTE command)

{

if (command==FLASH_SETUP)

else

{

Set up message structure in readiness for
sending messages

}
{

Transmit message to child using PutMsg()

Use the WaitPort() function wait for child to
confirm use of message

Use GetMsg() to retrieve reply indicating that
message is ready for re-use

/*Listing 6.3: An example routine for sending the child
process a 'flash' message.*/

UBYTE Flash(UBYTE command)

{

UBYTE error_number=NO_ERROR;
static struct FlashMessage flash;
if (command==FLASH_SETUP)

{

flash.flash_Msg.mn_Length=sizeof(struct
FlashMessage) ;

flash.flash_Msg.mn_ReplyPort=g_reply_port_p;

flash.viewport=g_viewport_p;
flash.frequency=FLASH_FREQUENCY;
flash.colour_reg=FLASH_REGISTER;

}

else {

flash.flash_Msg.mn_Node.ln_Type=NT_MESSAGE;

flash.command=command;

PutMsg(g_msgport_p, (struct Message *)&flash);

WaitPort(g_reply_port_p); /* wait for Flash
program to confirm use */

Programs Talking to Each Other

GetMsg(g_reply_port_p); /* message now ready for

re-use */
}
return(error_number) ;
}
/t __ ﬁ/

Some Main Program Coding Issues

For a main program to safely talk a to a child process using
FlashMessages we need to allow for the fact that since the child
process is a separate entity, ie a runable program in its own right, it
may not actually be found when we attempt to run it. The way |
tackle this is to include the attempted running of the child process
in my normal allocation/deallocation framework and in the CH 6-1
example you'll see this function pointer control block defined:

UBYTE (*display_list[])() = {

OpenInt,

OpenGraphics,

OpenGadtools,

LockScreen,

GetVisInfo,

CreateWindow,

CreateMenu,

CreateMenulLayout,

InstallMenu,

CreateReplyPort,

RunFlash

}s
Once the library, screen, window, menu and reply port creation jobs
have been successfully carried out, the routine shown in listing 6.4

is performed. This tries to run the flash program using the DOS
SystemTags() function like this:

SystemTags(“run FLASH:flash >NIL: <NIL:",TAG_DONE);

I've coded this assuming that a logical FLASH: assignment is in
place that tells the main program where to find the Flash utility
program. If, for example, the flash program was to be placed in the
command (c:) directory you would need to use

1> assign FLASH: c:
to tell the main program where the flash utility could be found.

How do we tell whether the flash program really does get found and
started or not? We just look to see whether its message port can be

Mastering Amiga Programming Secrets
detected using the Exec FindPort() function like this:
Forbid();
g_msgport_p=FindPort (DESTINATION_PORT_NAME) ;
Permit();
if (!g_msgport_p) error_number=STARTUP_ERROR;
else {

Notice here that Exec Forbid() and Permit() calls have been used to
sandwich the FindPort() call. This is important because it allows us
to lock out other tasks and so prevent any alteration of Exec’s port
list whilst our program is examining it.

Providing the port is found, which we detect by seeing a non-NULL
pointer being returned by the FindPort() function, we set up the
fields of the program’s FlashMessage structure using a
Flash(FLASH_SETUP) call and at this point we know that the child
process is up and running. The corresponding deallocation routine
just performs the call: Flash(FLASH_EXIT) thereby transmitting a
message to the flash program telling it to shut itself down.

/t __ */

/*Listing 6.4: Checking for the child message port is a
safe way for checking the childs existence.*/

UBYTE RunFlash(void)

{

UBYTE error_number=NO_ERROR;

SystemTags(“run FLASH:flash >NIL: <NIL:",TAG_DONE) ;

Forbid();

g_msgport_p=FindPort (DESTINATION_PORT_NAME) ;

Permit();

if (!g_msgport_p) error_number=STARTUP_ERROR;

else {
g_function=KillFlash;
PushStack(g_resource_stack_p,g_function);
Flash(FLASH_SETUP);

}
return(error_number) ;
}
/ﬁ __ */
void KillFlash(void) {Flash(FLASH_EXIT);}
/ﬁ __ */

Programs Talking to Each Other
Y o e iy e SN i i S, o W T, TS

The Colour Flashing Program Itself

The child process that performs the colour flashing is an
independent program in its own right. From a lbgical viewpoint it
works in much the same way as the colour flashing routines we've
already looked with the main difference being that it gets its
commands via FlashMessages from an external source. In order to
do this the child process must also have a message port available
and, as listing 6.5 shows, this is set up in a similar way to that
described earlier:

/t __ ﬁ/
/*Listing 6.5: Port creation routines for the child
process*/

UBYTE CreateCommandPort()

{

UBYTE error_number=NO_ERROR;
if((g_command_port_p=CreateMsgPort())==NULL)
error_number=STARTUP_ERROR;

else {
g_function=DeleteCommandPort;

PushStack(g_resource_stack_p,g_function);

}
return(error_number);
}
/* __ */
void DeleteCommandPort(){DeleteMsgPort(g_command_port_p);
}
/t .. */

In this case however the port needs to be added to Exec’s public
ports list. When the amiga.lib CreatePort() routine is used this is
done automatically but with the Exec style functions it has to be
done by the program itself using the Exec AddPort() function.

/i __ i/

/*Listing 6.6: Making the command port of the child
process public.*/

UBYTE MakeCommandPortPublic(void)

{

UBYTE error_number=NO_ERROR;
g_command_port_p->mp_Node.ln_Name=COMMAND_PORT_NAME ;
AddPort(g_command_port_p);
g_function=RemovePublicCommandPort;

Mastering Amiga Programming Secrets

PushStack(g_resource_stack_p,g_function);

return(error_number);

void RemovePublicCommandPort(void)

{

RemPort(g_command_port_p);

These routines, like all allocator/deallocator function pairs, are
controlled by a function pointer list and for the flash program this
looks like this:

UBYTE (*allocator_list[])() = {

OpenGraphics,

CreateTimerReplyPort,

CreateTimerRequestBlock,

OpenTimer,

CreateCommandPort,

MakeCommandPortPublic

}s
The graphics library is needed because the GetRGB4() and SetRGB4()
are used to get and set colour values. The timer entries are used to
set up the Amiga’s timer device, and the last two entries produce

the command port that we've been discussing. Listing 6.7 shows
the code for the complete colour flashing routine:

/t __ */

/*Listing 6.7: The child process colour flashing rou-
tine.*/

/* amiga.c - child process code for colour flashing */
#include "general.h"”

static UBYTE red, green, blue, toggle;

static UWORD colour_value;

UBYTE AmigaProg(void)

{

UBYTE colour_reg, command, error_number=NO_ERROR;
ULONG secs,microsecs,frequency;

struct Message *message p;

struct ViewPort *viewport_p;

do {

Programs talking ot each other
e e T B e B V7 T o T g T T T

WaitPort(g_command_port_p);
while (message_p=GetMsg(g_command_port_p))
{
command=((struct FlashMessage *)message_p)->command;

viewport_p=((struct FlashMessage *)message_p)->
viewport;

colour_reg=((struct FlashMessage *)message_p)-
>colour_reg;

frequency=((struct FlashMessage *)message_p)->
frequency;

ReplyMsg(message_p);
secs=60/frequency;
microsecs=(60*1000000/frequency)%1000000;

switch(command)
{
case FLASH_ON: FlashOn(viewport_p,colour_reg,
secs,microsecs);
break;
case FLASH_OFF: FlashOff(viewport_p,colour_reg);
break;

case FLASH_EXIT: FlashOff(viewport_p,colour_reg);
error_number=PROGRAM_EXIT;
break;

default: break;

}

}

while(error_number !=PROGRAM_EXIT) ;return(
error_number) ;

void FlashOn(struct ViewPort *viewport_p,UBYTE
colour_reg,ULONG secs,ULONG micros)

{

BOOL exit_flag=FALSE;

toggle=FALSE;
colour_value=GetRGB4(viewport_p->ColorMap,colour_reg);
red = (colour_value&0x0F00)>>8;

green = (colour_value&0x00F0)>>4;

blue= colour_value&0x000F;

while(!exit_flag)

Mastering Amiga Programming Secrets
[e PV L e e T e e N T e e S U N B T

{
if(!IsMsgPortEmpty(g_command_port_p)) exit_flag=TRUE;
else {
SetTimer (secs,micros);
if(toggle)
{
SetRGB4(viewport_p,colour_reg,red,green,blue);
toggle=FALSE;
}
else {
SetRGB4(viewport_p,colour_reg,0,0,0);
toggle=TRUE;
}

void FlashOff(struct ViewPort *viewport_p,UBYTE
colour_reg)

{

SetRGB4(viewport_p,colour_reg,red,green,blue);

Using the Flash Utility

The thing to remember about the approach that we've adopted in
this chapter is that the Flash program can now be regarded as a
general utility. Any program that needs to use a flashing colour can
just set up a reply port, run the flash program and then control the
required effects by sending the program the appropriate
FlashMessages. For the example associated with this chapter I've
just used the routine to flash one of the Workbench screen colours
but you'll doubtless be able to think of more interesting uses of this
approach in your own projects.

Copper
Lists: What
They Are and
How They
Work

The Amiga, as you will doubtless
know, contains a display co-
processor unit, or ‘Copper’, which
can control almost the entire
graphics hardware and can
manipulate most of the machine’s
hardware registers. The Copper is
able to wait for particular video
beam positions and then alter
screen colours, re-position
sprites, control the blitter and
even generate interrupts. What'’s
more it is able to do all of this
magic without requiring
assistance from the main 680x0
processor because it has DMA
(Direct Memory Access)
capability.

Copper programs are called
Copper lists and they come in two
basic forms known as hardware
Copper lists and intermediate
Copper lists. Hardware Copper
lists are the final (usewable) lists
of instructions and pointers to
these lists are loaded into the
Copper registers during vertical
blanking interrupt operations.
Hardware lists have two
important characteristics. Firstly,
they have to be held in chip
memory because they need to be
directly accessed by the Copper.
Secondly, they have to be sorted
so that the beam co-ordinates of
successive instructions are in
order of increasing video beam
positions since that is the way the
hardware expects to find them.

Intermediate Copper lists are
effectively just parts of a
complete Copper program. The
types of instructions they contain
are the same as those found in
the hardware lists but, because
they are not directly read by the

Mastering Amiga Programming Secrets
[e S e e Vo O S e R e P S e

Copper, they do not need to be held in chip memory. These
intermediate lists must be merged into a real hardware Copper list
before they can be used to create a display. In other words they
must be sorted and placed into chip memory! There are a number
of functions for achieving this but it is also possible to ‘hand craft’
your Copper lists by piecing them together, already sorted, directly
in chip memory. You sit down with a piece of paper, sketch out the
instructions, arrange them in an appropriate order, and write them
into your program as data statements if you are an assembler
coder, or as, say the contents of a UWORD array if you are coding in
C. Hand crafted lists are more difficult, or at least more time
consuming, to produce but lots of demo and game coders do this
sort of thing to save space. User Copper lists incidentally, which
you'll find mentioned in the next chapter, are intermediate Copper
lists.

Copper programming is still surrounded by an air of mystique.
Public domain demos, and there is plenty of good code available,
should have been a rich source of Copper list examples but
unfortunately much of the documentation for such code is either
poor or non-existent. It’s a pity because it means that no matter
how stunning the effects the code itself, certainly to a newcomer, is
unlikely to make much sense. This, to say the very least, can be
very frustrating to someone wanting to learn how to write such
programs. I'm not going to kid you that the more sophisticated
tricks, such as using the Copper to control the blitter, are not
complicated. But | do believe however that a brief explanation of
the instructions and essential system routines, coupled to some
detailed assembler and C examples, will help get you on the right
road as far as experimenting goes. This chapter in the main will
deal with the underlying ideas and provide an introduction to the
assembler side of things. The following chapter will look at a
detailed example involving Intuition coding from C.

The Copper Instruction Set

Most people are surprised when they first learn that the Copper has
only three instructions, Skip, Wait, and Move. All instructions are
two words long and the official documentation tends to label the
first word as IR1 and the second as IR2. Here are some instruction
details:

SKIP: jump over the next instruction if the video beam has reached a
given (x,y) screen position.

Bit 0 of word, IR1, is always set to 1 in a wait instruction. Bits 1-7
hold the horizontal beam co-ordinate and bits 8-15 hold the vertical
beam co-ordinate. The instruction skips the next instruction if the
beam counter is equal to or greater than the combined 15 bit
horizontal + vertical values given in the instruction. The second
word, IR2, has bit 0 set to 1. Bits 1-7 are the horizontal beam co-

Copper Listing
BT e)

ordinate compare enable bits and bits 8-14 are vertical compare
enable bits (these are most commonly used to mask off and so
ignore either the vertical or horizontal postion counters). Under
most circumstances all enable bits are set to 1. Bit 15 of IR2 is a
blitter-finished-disable bit and this is also normally set to 1. Skip is
used far less frequently than the other two Copper instructions.

WAIT: wait for a specific (x,y) screen position.

This instruction causes the Copper to wait until the video beam
position counters are equal to, or greater than, the (x,y) values
specified in the instruction. Bit O of word, IR1, is always setto 1 in
a wait instruction. Bits 1-7 hold the horizontal beam co-ordinate
and bits 8-15 hold the vertical beam co-ordinate. The second word,
IR2, has bit 0 set to 0. Bits 1-7 are the horizontal beam co-ordinate
compare enable bits and bits 8-14 are vertical compare enable bits
(these are most commonly used to mask off and so ignore either
the vertical or horizontal position counters). Under most
circumstances all enable bits are set to 1. Bit 15 of IR2 is a blitter-
finished-disable bit and this is also normally set to 1.

An example? If we wanted the Copper to wait until the display
reached line 100 (100=64 hex) we'd use this instruction:

dc.w $6401,3ff00 wait until line 100 (ignoring horizontal
counters)

MOVE: move some data from chip memory into one of the Amiga’s
hardware registers.

This instruction causes the Copper to move a specified data value
into a register. Bit 0 of word, IR1, is always set to O in a move
instruction. Bits 1-8 hold the destination address. Bits 9-15 are
unused but should be set to zero. The second word, IR2, holds the
data being transferred.

Supposing, for example, that we want to load the hardware
registers $180, $182, $184 and $186 with the value $000f, $Offf,
$00f0, and $0f00 respectively, we’'d use these Copper instructions:

dc.w $180,3000f
dc.w $182,380fff
dc.w $184,%00f0
dc.w $186,%$0f00

Easy enough to do but you're probably thinking that the numbers
themselves are not making much sense? At this point we need to
talk a little about the Amiga’s hardware registers; these are the
memory mapped hardware addresses which represent things like
the colour registers, bitplane pointers and a host of other control
locations. All registers are given symbolic names and the
hardware/custom.i include file provides these defined as register
address offsets from a base custom chip base address of $dff000.

Mastering Amiga Programming Secrets
S o i S o Vo U Nl TR Y

The $180 value is actually the offset for colour register 0, the base
of the Amiga’s 32 colour registers and in the hardware/custom.i
include file this offset is called color. By using this symbolic name
we can write the previous example instructions in this more
readable fashion:

dc.w color+0,$000f

dc.w color+2,30fff

dc.w color+4,%00f0

dc.w color+6,$0f00

In fact with a few well chosen EQUates we can improve things even
more:

BLUE EQU $o000f
WHITEEQU SOfff
GREENEQU $00f0
RED EQU $0f00

dc.w color+0,BLUE
dc.w color+2,WHITE
dc.w color+4,GREEN
dc.w color+6,RED

It’s now pretty obvious that what we are doing here is jamming RGB
colour values into the hardware colour registers. Each register
address is a word apart so the above code is setting register 0 to
blue, register 1 to white, register 2 to green and register 3 to red.
Copper lists written in this form are relatively easy to fathom out
but unfortunately a lot of example code tends to be written just as
a series of numbers. This bring us to quite an important part as far
as deciphering other coder’s Copper lists is concerned - you'll often
need to diassemble lists and re-write them in more readable fashion
just to understand what they mean. To do this you need to be
familiar with the general forms of the Copper list instructions in
order to work out what each instruction is doing.

Terminating A Copper List

Copper instruction lists, for reasons that we won’t go into (but
basically it’s the only way to stop the thing), must terminate with a
display position wait that can never occur. A wait for horizontal
position 254 on line 255 has been the standard instruction used
and as a data statement this looks like this:

dc.w S$FFFF,SFFFE

Copper Listing
(7

Getting Things Into Perspective

If you are new to both assembler coding and Copper list creation
then learning about both at the same time is a bit like trying to ride
a bike at the same time as you are trying to build it. This being so
I’'m going to devote quite a lot of space to the assembler side of
things in the hope that once you've seen how the various pieces of
a complete example program fit together you’ll be encouraged to
pull apart other example programs that you come across. We're
going to piece together an example that allocates some display
memory and creates a screen for displaying some graphics. In order
to do this we’ll need to open the graphics library and so library use
is the first item on the agenda.

Using Run-Time Libraries From Assembler Code

As you'll doubtless know Exec supports the idea of run time
libraries which exist separately and are written in a way which
allows any number of different programs to use them
simultaneously (or at least appear to do so within Exec’s multi-
tasking framework) and this obviously makes them much more
flexible and efficient.

Programs tell Exec that a library is needed by attempting to open it
using an OpenlLibrary() function. When such a call is made Exec
does several things: it searches its lists of libraries which are
already open and available. If the library is found then Exec simply
returns the address of the library and makes an internal note that
another program is now using it. If the library is not already open,
Exec passes on the request to AmigaDOS asking it to look for, and
then load, the specified library. AmigaDOS looks in the LIBS: logical
device (if you boot from the Workbench disk for instance then this
logical device will have been assigned to SYS:LIBS, ie the LIBS
directory of the Workbench disk). If AmigaDOS finds the library it
loads it and tells Exec where it has been placed. Exec then records
the fact that the library is now available by adding it to its list of
available libraries. Exec will never attempt to remove these library
modules whilst they are in use but should the last user of a
particular active library indicate that they no longer need access to
the routines, which they do by executing a CloseLibrary() function,
Exec’s library manager may then remove the memory copy of
library and release the associated memory so that it is free for
other use.

As all of this happens a lot of complex operations get carried out
but the good news is that from assembler, like C, you don’t need to
worry about this at all - as far as an applications program is
concerned most of these operations are transparent and this is so
even at the assembly language programming level. All a program
has to do to use a given library is open it using the Exec
OpenlLibrary() function, and then use the library routines in much

Mastering Amiga Programming Secrets
[it e S o e MR A R S DA SRR A |2 O LS e A

the same way that the OpenLibrary() function was itself used. The
only thing which the applications program must do is ensure that
the OpenlLibrary() call was successful and it does this by checking
that the address returned is non-NULL (ie not zero). If the address
returned has a zero value then the system hasn’t been able to open
the library.

I've already mentioned that the first stage in using a library is to
open it by using the Exec OpenlLibrary() function. You may now be
wondering how it is possible to open the Exec library in the first
place. The simple answer is that you do not need to because the
Exec library never has to be opened. Exec’s base address, known
conventionally as SysBase, is permanently available because it is
stored in the long-word memory location whose first byte is at
location 4. The four bytes which make up this long word location
are called AbsExecBase and because this is loaded with a pointer to
the Exec library during system start-up: the Exec library is always
alive and kicking from the word go. So, how do we make a library
call? By convention we place the base address of the library in
register a6, and then make an indirect subroutine call using the
appropriate library vector offset (LVO) value to specify the routine
to be executed. Indirect subroutine calls of this type are very
important on the Amiga and they’re used because the arrangement
is connected with the way the Amiga library functions are accessed
internally (these explanations involve some pretty advanced topics
including the use of things called jump tables which are not going
to be discussed). What happens as far as the indirect subroutine
call with displacement is concerned is that the address in the
specified address register gets added to the specified LVO function
call displacement and this produces a destination subroutine
address that leads us to the right library function.

Now that the mechanics of library function call use has been
explained the code which performs the graphics library opening
will be easy to understand. I've already mentioned that in the case
of the Exec library the base address is already available in
AbsExecBase. The bare bones code for an OpenLibrary() Exec call
can therefore be written like this:

move.l _AbsExecBase,a6 get base address of Exec library

jsr _LVOOpenLibrary(a6) make the indirect subroutine
call

Before this sort of code can be executed it is of course necessary to
set up any parameters which the library function needs. If you look
back at the OpenLibrary() function you'll see that it needs a pointer
to a library name in register al, and a version number in dO. For the
moment ['ll be setting the dO to zero because this tells Exec that
any library version will do. Closing a Library, incidentally, is just as
easy as opening it. You use the same type of indirect subroutine

Copper Listing
e ot o ctimusgan: S on)

call, but specify the CloseLibrary() function instead:

move.l _AbsExecBase, a6 get base address of Exec library

jsr _LVOCloselLibrary(a6) make the indirect subroutine
call

Failed Open Library Calls

Why would a library fail to open? The system might not have been
able to find it on disk, the specified version might not be available,
the programmer might simply have spelt its name wrong within the
program, or the system might even be running out of memory and
have insufficient space to load a new library. The important point is
that you must not make any library function calls unless you have
got a valid base pointer or you will doubtless get a visit from the
Amiga guru!0

Function Name: OpenlLibrary()

Description: Open arun-time library

Call Format: base_address=Openlibrary(library_name, version);

C Prototype: struct Library *OpenlLibrary(STRPTR, ULONG);

Registers: DO Al DO

Arguments: library_name - the address of a null terminated string
version - a library version number

Return Value: base_address - the address of the base of the library. If the
library could not be opened a NULL value is returned.

Notes: User mustnot attempt to use any library functions if this
function did not succeeded.

Function Name: CloselLibrary()
Description: Close a previously successfully opened library
Call Format: Closelibrary(base_address);
C Prototype: void CloseLibrary(struct Library *);
Registers: Al
Arguments: base_address - the library base addressReturn
Value: None
Notes: User must not make library calls to a library after it has
been closed.
Prefixes

You'll notice in the above code fragment that AbsExecBase and the
LVO value have underscore prefixes. This stems from an internal C
language convention and the underscore used in all assembly
language forms has been introduced simply to provide
compatibility between C and assembler header files and code. Not
all programmers use these underscore arrangements but it’'s a good

Mastering Amiga Programming Secrets
557 e e T A B R R A et e Dt R e iy s s s S e st vvnsnl

habit to cultivate because it will be useful when you come to more
advanced coding.

Library Vector Offset (LVO) Values

LVO offset values can be acquired in a number of ways but for the
moment we’ll be putting LVO definitions at the start of our
programs because it is easiest. The LVO value for the Exec
OpenLibrary() function is -552, ie -0228 hex and so the assembly
language programmer is quite at liberty to define the displacement
in this fashion:

move.l _AbskExecBase, a6 get the base address of Exec
library

jsr 552(a6) make the indirect subroutine
call

The trouble is that with this latter approach however is that you
loose the inherent documentation that the LVO references provide.
Let’s face it the number -552 doesn’t, unless you’'ve memorised all
of the LVO tables, exactly tell you what library call is being made.
The reference _LVOOpenlLibrary is much more meaningful.

First Coding Stages

If we can get to the point where all the library opening and closing
stuff is in place and most of the code is understandable then the
subsequent Copper list code can be discussed in relative isolation
and this should make things easier to understand. To get to this
first stage we’'ll need to set up a null terminated text string
representing the name of the graphics library. We’'ll also need a
labelled long word location to store the base address of the library
once it is open. Here’s the sort of pseudo-ops which do the trick:

graphics_name dc.b ‘'graphics.library’', NULL
_GfxBase ds.1 1

I'll be placing these at the end of my program and between these
directives and the initial EQUate definitions will come the real code
(the stuff that the assembler will turn into executable instructions).
Talking of real code let’s identify a suitable plan-of-action: we've got
to load the address of the Exec library into register a6, set up the
intuition library name pointer and version details, and then make
an OpenlLibrary() call as explained earlier. If the value returned in
d0 is not zero then the graphics library will be open. How do we
test dO to check whether it contains a zero or not? Simple, we use a
move instruction to copy the contents of dO to the location that
we've set up to hold the graphics library pointer this move sets or
clears the processor’s zero flag. Remember that if the library does
open successfully we’ll need this pointer in order to perform the
CloselLibrary() routine before the program terminates. It's important
to realise that, if for some reason the library does not open then we
must not use the Exec CloseLibrary() function because there’ll be no

Copper Listing
[7os e s mancas = A

library to close. Similarly we must not make any graphics library
calls if the library did not open. As you might guess this calls for a
bit of conditional testing and the way its done is as follows:

We place a beq instruction immediately after we stored the
Openlibrary() return value and branch in such a way that if the
Openlibrary() return value is zero then we avoid executing the
CloselLibrary() routine. We terminate this program with an rts
instruction clearing register dO before returning to system level (to
indicate successful completion). Well that’s the theory. Example
CH7-1.s is the code that handles the graphics library opening and
closing. Normally we’d use an assembly language macro for the
library opening and closing but for these examples, since macros
can tend to hide what’s going on, I'm coding all operations so that
they are visible:

/*Listing 7.1: Some initial skeleton code for the example

progra*/m
* Example CH7-1.s
NULL EQU O
_AbsExecBase EQU 4
_LVOOpenLibrary EQU -552
_LVOCloseLibrary EQU -414
start move.l _AbsExecBase, a6 get base address of Exec
library
lea graphics_name,ai load pointer to library
name
moveq #0,d0 any version will do!
openlib jsr _LvOOpenLibrary (a6) make the indirect
subroutine call
move.l do,_GfxBase save returned pointer
beq exit did library open 0K?

open_ok At this point we can use the graphics library although
we would need to reinstate exec library base pointer
before closing

closelib move.l _GfxBase,al library to close
jsr _LVOCloseLibrary(a6) make the indirect
subroutine call
exit clr.1 do
rts logical end of program

Mastering Amiga Programming Secrets
T e T R D e e

_GfxBase ds.1 1
graphics_name dc.b ‘graphics.library’, NULL

Preventing Multitasking

For the current Copper list example we’'ll be taking over the display
and, to prevent interference from other tasks, it’s necessary to turn
off the Amiga’s multitasking by making a call to the Exec Forbid()
function. Prior to the example terminating a corresponding Permit()
call is made to return the machine to its normal multitasking state.
The LVO values for these functions are -132 and -138 respectively
and because they are straightforward functions which require no
parameters you'll be able to see how they are used directly from the
extended listing Example CH7-2.s. I've turned off multitasking
shortly after the program starts running and re-instated it before
the program finishes. Notice, incidentally, that we do not need to
load a6 with the base of the exec library when the Forbid() call is
made because this library base is already in register a6.

/*Listing 7.2: The Exec Forbid() function makes sure that
we have the machine to ourselves.*/

* Example CH7-2.s

NULL EQU 0
_AbsExecBase EQU 4
_LvoopenLibrary EQU -552
_LVOCloseLibrary EQU -414
_LVOForbid EQU -132
_LVOPermit EQU -138
start move.l _AbsExecBase, a6 get base address of Exec
library
jsr _LVOForbid(a6) turn of multitasking
lea graphics_name,ai load pointer to library
name
moveq #0,d0 any version will do!
openlib jsr _LVOOpenLibrary(a6) make the indirect subrou
tine call
move.l dO,_GfxBase save returned pointer
beq exit did library open 0K?

open_ok Graphics open and our program effectively has the
machine to itself because no other progams are allowed
to run!

Copper Listing

EEETTE T
closelib move.l _GfxBase,al library to close
jsr _LVOCloseLibrary(a6) make the indirect
subroutine call
exit jsr _LVOPermit(a6) reinstate multitasking
clr.1 do
rts logical end of program

_GfxBase ds.1 1
graphics_name dc.b ‘'graphics.library’', NULL

Creating An Example Copper List

The Copper list has a number of specific jobs to do. For a start the
hardware registers that hold the addresses of the display bitplanes
need to be set up. Each bitplane pointer is 32 bits long and
although the hardware addresses are memory mapped in such a
way that 680x0 move.l instructions can store the complete pointer
in one go with the Copper it is necessary to store the upper and
lower words of each bitplane pointer separately. This is because
Copper instructions are word, rather than long word, oriented! Each
of the Amiga’s hardware bitplane registers are given symbolic
names with bpllpth and bpllptl referring to the high and low
words of bitplane register 1, bpl2pth and bpl2ptl to the high and
low words of bitplane register 2 and so on. We’ll be using a 2
bitplane display and so you might be expecting our Copper list to
start like this:

Copperlist: dc.w bplipth, somevalue
dc.w bpliptl, somevalue
dc.w bpl2pth, somevalue
dc.w bpl2ptl, somevalue

The fly in the ointment here is that at the time we write the
program: we will not know the values of the bitplane pointers. The
bitplane memory will be allocated at run time and the bitplane
addresses will only be known then. Our code will need to allocate
memory and then insert the appropriate addresses into the Copper
list. To make this job easier I'm going to write the bitplane
instructions in a way that allows us to identify the word locations
that will hold those addesses.

Copperlist: dc.w bplipth bitplane 1
pih: dc.w O

dc.w bpliptl
pil: dc.w O

dc.w bpl2pth bitplane 2
p2h: dc.w O

Mastering Amiga Programming Secrets
AT e 1T i) S LTI S VNS B e A P e U 2 e ==

dc.w bpl2ptl
p21: dc.w O

We also need to tell the system how many bit planes are being used
and there is a hardware register called bplconO (bitplane control
register 0) that is used for this purpose. Bits 12-14 are used as a
bitplane count. Bit 9 is also usually set as this enables composite
video colour on some machines (A1000) so for our example we’ll be
using this instruction:

dc.w bplcon0,$2200 2 bitplanes

The next thing to do is set up the colour registers and we've already
seen some suitable example code for this. Providing these equates
are in place:

BLUE EQU $000f
WHITE EQU SOfff
GREEN EQU $00f0
RED EQU $0f00

our instructions for loading the four colour registers needed for a 2
bitplane display are:

dc.w color+0,BLUE

dc.w color+2,WHITE

dc.w color+4,GREEN

dc.w color+6,RED

These colour values are of course completely arbitrary. We could
have chosen any colours we liked.

There are a few other control registers that have to be set up in
order including the registers that position the display. Register
diwstrt (display window start) controls the starting position of the
display with the upper byte of data word IR2 representing the
vertical start position and the lower byte the horizontal start
position. Because of the way raster scan devices work a 320 x 256
pixel display normally needs a top left position of (129,41) to
centre it on the monitor and if you add the 320 widths and 256
height to these values you get a bottom right co-ordinate of
(448,296) so diwstop needs to represent co-ordinate (449,297). The
diwstop register uses an implied upper bit for its vertical
component so the value written actually corresponds to (449,297-
256), ie (449,41) so in hex form the result is that diwstrt needs a
value of $2981 and dwstop of $29C1 and the corresponding Copper
instructions are:

dc.w diwstrt,$2981
dc.w diwstop,$29C1

Two other registers called ddfstrt and ddfstop also need to be set

Copper Listing
[Porarmcazasarmmnas s suezzoras)

because these govern how many data words are displayed per line.
The normal low res display values are:

dc.w ddfstrt,$38
dc.w ddfstop,$DO

Two modulo registers, which govern the amount added on to the
bitplane pointers at the end of each screenline, need to be cleared
using these instructions:

dc.w bplimod,O
dc.w bpl2mod,O

Do remember incidentally that the object of the exercise is simply
to provide an overview of what coders do when they hit the
hardware. 1t’s impossible to provide full details of the use and
purposes of all the various hardware registers in the space available
but this information is of course readily available from the official
Addison Wesley Amiga Hardware manual.

The last instruction in our Copper list is the everlasting wait
instruction mentioned earlier:
dc.w $ffff,$fffe end of list

Now if we piece all the above ideas together we end up with this set
of instructions:

Copperlist:dc.w bplipth bitplane 1
pih: dc.w 0

dc.w bpliptl
pil: dc.w 0

dc.w bpl2pth bitplane 2
p2h: dc.w 0

dc.w bpl2ptl
p21: dc.w 0

dc.w bplcon0,$2200 2 bitplanes

dc.w color+0,BLUE

dc.w color+2,WHITE

dc.w color+4,GREEN

dc.w color+6,RED

dc.w diwstrt, $2981

dc.w diwstop,$29C1

dc.w ddfstrt,$38

dc.w ddfstop,$DO

dc.w bplimod,O

dc.w bpl2mod,O

dc.w $ffff, $fffe end of list

Mastering Amiga Programming Secrets
|

Allocating Display Memory

For simplicity I'll be using a display with just two bitplanes and to
allocate this the exec library AllocMem() function will be used. This
requires the amount of memory to be specified in register dO and
the memory type to be in register d1. The returned memory pointer
needs to be saved, in order to return the memory before the
program terminates, and it also needs to be tested to see that the
allocation was successful. Here’s the code that does the job:

move.l #40*256*2,d0 lowres 256 lines 2 planes
move.l #MEMF_CHIP|MEMF_CLEAR,d1
jsr _LVOAllocMem(a6)
move.l do,screen
beq closelib
and this is the code that will return that memory:
move.l _AbsExecBase,a6 Exec library base
move.l screen,al screen address
move.l #40*256*2,d0 amount allocated
jsr _LVO FreeMem(A6)

Setting the Bitplane Pointers

Once the display memory has been allocated we can store the
bitplane pointers into the designated Copper list locations. Since
there are only two bitplanes involved in this example I've opted for
the simple approach of loading the screen address and storing each
part in turn (this constitutes bitplane 1), and then repeating the
process after re-loading the address and adding an amount equal to
the size of a single bitplane:

move.l screen,dO
move.w do,pil
swap do

move.w dO,pih
move.l screen,d0
add.1l #40*256,d0
move.w dO,p2l
swap do

move.w dO,p2h

Because this code is executed whilst dO contains the screen address
the first instruction in the above sequence will not be needed in the
program itself (it was just shown for clarity in the above fragment).

Copper Listing
e

Using The Copper List

We load the address of the custom chips into register a5 (any
address register could have been used) and the base of the graphics
library into a6. Then we turn off the Copper DMA by writing to the
DMA control register like this:

move.w #$80,dmacon(a5) Copper dma off
and having done that we save the old Copper list pointer and install
the one associated with our program:
move.l LOFlist(a6),0ld_list save existing Copper list
move.l #Copperlist,LOFlist(a6) install new list

The LOFlist offset (actually $32) is the location within the GfxBase
structure that points to the LOFlist Copper list and it is this pointer,
after saving it, that we replace with our own. Once the pointer is in
place Copper DMA is turned back on again like this:

move.w #$8080,dmacon(a5) Copper dma on

so, if we put these ideas together, we get the section of code that
installs our new list:

lea CUSTOM, a5 custom chip base

move.l _GfxBase, a6 graphics base

move.w #$80,dmacon(a5) Copper dma off

move.l LOFlist(a6),0ld_list save existing Copper list
move.l #Copperlist,LOFlist(a6) install new list

move.w #$8080,dmacon(a5) Copper dma on

All we need now is a loop to check for an exit condition and I've
opted for the user hitting the ESCape key. The following code busy
loops waiting for screen line 255 ($ff) to be reached then it reads
the keyboard and checks to see if it is an ESCape character. The
moment such a keypress is detected the old LOFlist pointer is re-
instated in readiness for the program to terminate. Here’s what this
section of the code looks like:

loop: move.b vhposr(a5),d0 get scanline
cmp.b #$ff,do line $ff?
bne.s loop

5 could do something here!
move.b $bfec01,d0 read keyboard
eor.b #$ff,dO decode byte
ror.b #1,d0
cmp.b #%45,d0 ESCape key?

bne.s loop keep going

Mastering Amiga Programming Secrets
TR~ Y TS R SRS AP L VT T =T § ST =0 ST <o d TR YT o T |

move.w #$80,dmacon(a5) Copper dma off

move.l old_list,LOFlist(a6) re-install old list

move.w #$8080,dmacon(a5) Copper dma on
Busy waiting like this shouldn’t really be done with Amiga
programs but it makes for a simple to understand loop and, since
our program has disabled multitasking anyway, it doesn’t really
matter. The good news is that we’'ve now got a completed program
and if all of the Copper list and display related fragments are now

added to our assembler source code along with the extra definitions
required to allow assembly we get this finished result:

/*Listing 7.3: The completed program with Copper list in place*/

* Example CH7-3.s

section code,code_c

NULL EQU O
_AbsExecBase EQU 4
_LVOOpenLibrary EQU -552
_LVOCloseLibrary EQU -414
_LVOForbid EQU -132
_LVOPermit EQU -138
_LVOAllocMem EQU -198
_LVOFreeMem EQU -210
MEMF_CHIP EQU 1<<1
MEMF_CLEAR EQU 1<<16
CUSTOM EQU $DFFO000
BLUE EQU $000f
WHITE EQU SOfff
GREEN EQU $00f0
RED EQU $0f00
color EQU $180
LOFlist EQU $32

bplcon0 EQU $100

bplimod
bpl2mod

bplipth
bpliptl
bpl2pth
bpl2ptl

diwstrt
diwstop
ddfstrt
ddfstop
dmacon

vhposr

start

openlib

open_ok

move.l

jsr
lea

moveq

jsr

move.l
beq

move.l
move.l
jsr
move.l
beq
move.w

swap
move.w
move.l
add.l

Copper Listing
T RO TR

EQU $108
EQU $10A

EQU SEO
EQU $E2
EQU $E4
EQU Se6

EQU $8E
EQU $90
EQU $92
EQU $94
EQU $96
EQU $6

_AbsExecBase,a6 get base address of Exec
library

_LVOForbid(a6) turn of multitasking

graphics_name,ai load pointer to library
name

#0,d0 any version will do!

_LVOOpenLibrary(a6) make the indirect
subroutine call

d0,_GfxBase save returned pointer

exit did library open 0K?

#40*256*2,d0 lowres 256 lines 2 planes

#MEMF_CHIP+MEMF_CLEAR,d1

_LVOAllocMem(a6)

d0,screen

closelib

do,p1l install bit plane
pointers

do

do,pih

screen,d0

#40*256,d0

107

Mastering Amiga Programming Secrets
R e R S e S D e e T]

loop:

closelib

exit

move.w
swap
move.w
lea

move.
move.
move.
move.

£ - -~ £ M

move.

move.b
cmp.b
bne.s

move.b
eor.b
ror.b
cmp.b
bne.s

move.w
move.l

move.w

move.l

move.l
move.l

jsr

move.l
jsr
jsr
clr.1

do,p21
do

do,p2h
CUSTOM, a5

_GfxBase, a6
#$80,dmacon(a5)
LOFlist(a6),0ld_list

graphics base
Copper dma off

save existing Copper list

#Copperlist,LOFlist(a6)install new list

#$8080,dmacon(a5)

vhposr(a5),d0
#$ff,d0
loop

Copper dma on

get scanline
line $ff?

could do something here!

$bfec01,d0
#$ff,d0
#1,d0
#%45,d0
loop

#$80,dmacon(a5)
old_list,LOFlist(a6)
#$8080,dmacon(a5)

_AbsExecBase,a6

screen,al
#40*256*2,d0
_LVOFreeMem(a6)

_GfxBase,at
_LVOCloseLibrary(a6)

_LVOPermit(a6)
do

read keyboard

decode byte

ESCape key?
keep going

Copper dma off
re-install old list

Copper dma on

base address of Exec
library

screen address

amount allocated

library to close

make the indirect subrou
tine call

reinstate multitasking

rts

_GfxBase ds.1 1
screen ds.1 1
old_list ds.1 1
graphics_name dc.b ‘graphics.library’, NULL

eve

Copperlist:dc.w

pih: dc.
dc.
p1l: dc
dc.
p2h: dc.
dc.
p2l: dc.
dc.

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc

n

w

w

W

€ £ £ ¥ ¥

¥ £ £ £ £ £ £ ¥ =

W

logical end of program

bplipth

0

bpliptl

0

bpl2pth

0

bpl2ptl

0
bplcon0,$2200

color+0,BLUE
color+2,WHITE
color+4,GREEN
color+6,RED
diwstrt,$2981
diwstop,$9CC1
ddfstrt,$38
ddfstop, $DO
bplimod,0
bpl2mod,0

dc.w $ffff,$fffe

When this program runs you’'ll get a display that is just showing the
(blue) background colour and when you press the ESCape key the
program will terminate. It's actually very easy now to show you how
the Copper list can be modified to alter the display because, since
all the underlying 680x0 code framework is now in place, we only
need concern ourselves with the Copper list issues.

Let's say we want to divide the screen into four background colours,
blue, green, red and white. To split the screen into four equal parts
on a $FF (ie 256) line screen the line numbers which we’ll need to

Copper Listing
[52) 2e s i GO 05

bitplane 1

bitplane 2

2 bitplanes

end of list

Mastering Amiga Programming Secrets
A R A S S A R A B 5 s X A 758 |

wait for are $3F, $7F, and $BF. But our screen is starting from ¢
vertical position of $29 (remember the value placed in registe:
distrt) so the values actually waited for are going to be $3F+$29
$7F+$29, and $BF+$29.

With the current Copper list the display background colour (coloul
register 0) starts off blue. What we need to do now therefore is wait
for the above screenline positions and as they occur change the
value of colour register 0 to green, red and finally white. There’s ¢
minor complication with the horizontal wait position calculatior
and it turns out that you need to wait for position $E in order to get
the color register changed during the time that the beam is away
from the visible display area but accepting this the overall ideas are
realtively straightforward. Here are the instructions needed:

dc.w $3FOF+$2900,8fffe wait for this line

dc.w color+0,GREEN and change colour reg O
dc.w $7FOF+$2900,8fffe ditto

dc.w color+0,RED

dc.w $BFOF+$2900,$fffe ditto

dc.w color+0,WHITE

If we add these instructions to our existing Copper list we get the
following four colour display example:

/*Listing 7.4: Changing effects by altering the Copper
instructions is easy once the main framework of the pro-
gram is in place.*/

* Example CH7-4.s

section code,code_c

NULL EQU O
_AbsExecBase EQU 4
_LvOOpenLibrary EQU -552
_LVOCloseLibrary EQU -414
_LVOForbid EQU -132
_LVOPermit EQU -138
_LVOAllocMem EQU -198
_LVOFreeMem EQU -210
MEMF_CHIP EQU 1<<1
MEMF_CLEAR EQU 1<<16

CUSTOM EQU $DFF000

BLUE
WHITE
GREEN
RED

color
LOFlist

bplcon0

bplimod
bpl2mod

bplipth
bpliptl
bpl2pth
bpl2ptl
diwstrt
diwstop
ddfstrt
ddfstop
dmacon

vhposr

start

name

openlib

open_ok

move.l

jsr
lea

moveq

jsr

move.l
beq

move.l

EQU
EQU
EQU
EQU

EQU
EQU

EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

$000f
SOfff
$00f0
$0f00

$180
$32

$100

$108
$10A

$EO
$E2
$E4
$eb6

$8E
$90
$92
$94
$96
$6

_AbsExecBase,a6

_LVOForbid(a6)

graphics_name,a1

#0,d0

_LvoOpenLibrary(a6)

d0,_GfxBase

exit

#40*256*2,d0

Copper Listing
3 o e 1SV S P s

get base address of Exec
library

turn of multitasking
load pointer to library

any version will do!

make the indirect
subroutine call

save returned pointer
did library open OK?

lowres 256 lines 2 planes

Mastering Amiga Programming Secrets

ers

loop:

move.l
jsr
move.l
beq

move.w

swap
move.w
move.l
add.1l
move.w
swap
move.w

lea

move.
move.
move.

move.

£ - = E

move.

move.b
cmp.b
bne.s

move.b
eor.b
ror.b
cmp.b
bne.s

move.w
move.l

move.w

#MEMF_CHIP+MEMF_CLEAR, d1

_LVOAllocMem(a6)

d0,screen

closelib

do,p1l

do

do,p1h
screen,do
#40*256,d0
do,p21

do

do,p2h

CUSTOM, a5

_GfxBase, a6
#$80,dmacon(a5)
LOFlist(a6),0ld_list

install bit plane point-

graphics base
Copper dma off
save existing Copper list

#Copperlist,LOFlist(a6) install new list

#$8080,dmacon(a5)

vhposr(a5) ,d0
#$ff,dO
loop

Copper dma on

get scanline
line $ff?

could do something here!

$bfec01,d0
#$ff,dO
#1,d0
#%$45,d0
loop

#$80,dmacon (a5)
old_list,LOFlist(a6)
#$8080,dmacon(a5)

read keyboard

decode byte

ESCape key?
keep going

Copper dma off
re-install old list

Copper dma on

move.l

move.l
move.l

jsr

closelib move.l
jsr

exit jsr
clr.1l
rts

_GfxBase ds.1 1
screen ds.1 1
old_list ds.1 1

_AbsExecBase, a6

screen,at
#40*256*2,d0
_LVOFreeMem(a6)

_GfxBase, a1
_LVOCloseLibrary(a6)

_LVOPermit(a6)
do

Copper Listing
o e e |

base address of Exec
library

screen address

amount allocated

library to close

make the indirect
subroutine call

reinstate multitasking

logical end of program

graphics_name dc.b ‘graphics.library’, NULL

Copperlist:dc.w
pih: dc.w
dc.w
pil: dc.
dc.
p2h: dc.
dc.
p21: dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

fE £ £ £ £ £ £ £ £ £ £ £T £ £ ¥

even

bplipth

0

bpliptl

0

bpl2pth

0

bpl2ptl

0
bplcon0,$2200
color+0,BLUE
color+2,WHITE
color+4,GREEN
color+6,RED
diwstrt,$2981
diwstop,$9CC1
ddfstrt,$38
ddfstop, $DO
bplimod,0

bitplane 1

bitplane 2

2 bitplanes

Mastering Amiga Programming Secrets
e e 2 e 2 S DR B 0 e N AN AN A A SN B U A S8

dc.w bplimod,O

dc.w bpl2mod,0

dc.w $3FOF+$2900,3fffe wait for this line

dc.w color+0,GREEN and change colour reg O
dc.w $7FOF+$2900,3fffe ditto

dc.w color+0,RED

dc.w $BFOF+$290G,$fffe ditto

dc.w color+0,WHITE

dc.w $ffff,$fffe end of list

With both example programs I've incuded my own definitions of
register names and so on and this has been done firstly so that
they’re visible as you look at the program, and secondly so that the
examples can be assembled without requiring the official includes.
Most programmers however would include the appropriate Amiga
system includes and use those definitions rather that duplicating
them in the code itself.

The High-Level Alternative

The examples I've dealt with so far have been extremely simple
ones and were written just to show you how such code is
constructed. Trust me, much more work is needed to create useful
programs of this nature and it should be apparent that this
approach leaves much to be desired as far as the effort/results ratio
is concerned. Taking over the display, disabling multitasking etc,
are all frowned upon by Commodore and most sensible coders and
in fact there are much easier and more system friendly ways of
adding many Copper list effects to your programs. What’s equally
important is that you don’t need to use assembly language either
because C programmers have a number of macros for generating
Copper instructions. I won't be using these macros until the next
chapter but since their uses and formats are related to all our
previous Copper list discussions they are best dealt with now.

Function Name: CWAIT()

Description: to add a wait instruction to a user copper list
Call Forrnat: CWAIT(copper_list_p, vertical, horizontal)

C Prototype: void CWAIT (struct UCopList *, WORD, WORD),

Redgisters: CWAIT(Al, DO, D1)

Arguments: copper_list_p - pointer to a UCopList structure vertical -
vertical beam position horizontal - horizontal beam
position

Return Value: None
Notes: Horizontal value must not be greater than 222

Copper Listing
|ascocias Dnc AR S S i

Function Name: CMOVE()

Description: Macro to add a move instruction to a user copper list
Call Format: CMOVE(copper_list_p, hregister, hvalue)

C Prototype: void CMOVE(struct UCoplList *, void *, WORD);

Registers: CMOVE(AL, DO, D1)

Arguments: copper_list_ p - pointer to a UCopList structure hregister
- farget hardware register hvalue - value to be placed in
register

Return Value: None

There is another macro provided called CINIT() and this allows the
C programmer to allocate/initialize a user Copper list:

Function Name: CINIT(

Description: Macro to initialize a user Copper list

Call Format: ucl_p=CINIT(c_p, n)

C Prototype: structUCopList *CINIT (struct UCopList *, UWORD),
Registers: DO = CINIT(AO, DO)

Arguments: c_p- pointer to a UCopList structure n - number of
copper instructions being used

Return Value: ucl_p - pointer to an initialized list to hold user Copper
list instructions

Notes: The official documentation for this function is not as
clear as it might have been. It seems that the original
idea of the routine was that if a user provided a NULL
c_p UCoplist pointer CINIT() would do ALL necessary
structure/buffer allocations and would return a pointer to
afreshly allocated UCoplList structure (for use in
subsequent Copper list operations). This doesn't now
appear to be the case and to allocate a new list the
routine actually needs to be passed a twelve byte block
of MEMF_PUBLIC IMEMF_CLEAR memory (ie an
‘uninitialized’ UCopList structure). Normally then
subsequent operations should use the c_p UCopList
structure supplied to CINIT() routine and ignore the
returned ucl_p pointer.

Function Name CEND(

Description: Macro to terminate a copper list

Call Format: CEND(copper_list p)

C Prototype: void CEND(struct UCopList *copper_list_p);
Arguments: copper_list p - pointer to a UCoplList structure
Return Value: None

Mastering Amiga Programming Secrets
o o s O L S o S A L N e e S i

Intuition

Copper list examples which build an Amiga display from the
ground upwards are all very well but many of you will I suspect be
working in the Intuition environment and will be more interested in
this side of the coin. The point here is that if you have opened an
Intuition screen then all the low-level system structures, and the
Copper list instructions which describe the display, are already in
place - they have been set up by Intuition itself.

The good news now is that a mechanism exists whereby a
programmer can add additional Copper instructions via a separate
user Copper list. These were mentioned at the start of this chapter
and it is these entites, coupled with the use of the high-level CWAIT,
CMOVE and CINIT macros that the C programmer needs to come to
terms with. The basic idea is that the user sets up a suitable list of
the extra commands, an intermediate Copper list, and then asks the
system to remake its own lists so that it incorporates the new user
list instructions. Having done that the system is asked to use the
re-made hardware Copper lists. The benefit of knowing how to do
this in an Intuition compatible way is that the programmer can get
the best of both worlds — low-level style display tricks can be used
from within an easily handled high-level Intuition environment.

When Intuition sets up a screen display it uses a complex data
block called a Screen structure. If you look at this structure you'll
see that it contains a number of sub-structures including one called
a ViewPort structure. It is this latter entity which describes the
screen display and, if you look in the graphics/view.h header file
you will see this type of layout:

struct ViewPort {
struct ViewPort *Next;
struct ColorMap *ColourMap;
struct CopList *Dsplns;
struct CopList *Sprins;
struct CopList *ClrIns;
struct UCoplList *UCopIns; /* user Copper list pointer */
SHORT DWidth, DHeight;
SHORT DxOffset, DyOffset;
UWORD Modes;
UBYTE SpritePriorities;
UBYTE reserved;
struct RasInfo *RasInfo;
}s
As might be expected there is a lot of information about ViewPorts

Copper Listing
2 maraeis —man g mgRen)

in the RKM manuals. For our present purposes however all that we
need to know is that the ViewPort structure contains space for a
pointer to a user Copper list. Our task then (at least on the face of
it) is simple; create a user Copper list, place the start address in the
UCopins field of the screen’s ViewPort structure, and then tell the
system to make use of the new instructions.This involves a number
of operations including the merging and sorting of the instruction
lists. Luckily, at the Intuition level, a system routine called
MakeScreen() does all the hard work for us:

Function Name: MakeScreen()

Description: This function forces (in an Intuition compatible way) a
complete remake of the screens ViewPort data.

Call Format: MakeScreen(screen_p)

C Prototype: void MakeScreen(struct Screen *);

Registers: MakeScreen(A0)

Arguments: screen_p - pointer to a screen structure

Return Value: None

Notes: If a user copper list has been added to the ViewPort this

routine will incorporate it.

With the new ViewPort data in place all that has to be done is tell
the system to take notice of it. Intuition contains a routine
especially made for the purpose:

Function Name: RethinkDisplay()

Description: Routine will completely reconstruct the Intuition display

Call Format: RethinkDisplay(

C Prototype: void RethinkDisplay(void);

Registers: None

Arguments: None

Return Value: None

Notes: This routine can take several milliseconds to run but itis
by far the easiest way to incorporate user copper list
code into the Intuition environment.

That then, in terms of the main instructions and function calls, is
the basic scenario for what might be called high-level Copper list
programming. For the C programmer, incidentally, it is the
hardware/custom.h include file which provides the register address
offsets needed to hit the hardware directly

The more difficult task, deciding exactly what Copper instructions
need to be used, still has to be carried out and the instructions
obviously depends on what it is you wish to do. The best thing to
do here is provide a detailed example and that is what the next
chapter is all about.

Mastering Amiga Programming Secrets
s e e R S~ i e T e B)

8:

Copper List
Shading
Effects

Copper list shading tricks are
used in hundreds of demos and
in quite a few commercial
programs as well. To be honest |
could give you half a dozen lines
of C or assembler code and say
this is how you can do it. I could;
but that approach is really only of
use if you know what the
hardware does and know how to
generate the colour wvalues
anyway. I'll assume that you don't
know about such things and,
because it’s not going to be that
obvious how the final code
works, I'll tackle the explanations
right from first principles. The
main problem actually has little
to do with the Copper or the
Amiga at all - it is to do with
working out how to generate
series of cycling numbers.
Admitedly these numbers, at the
end of the day, will be jammed
into colour registers — but as far
as the underlying ideas go that is
neither here nor there. Essentially
we need to step through the lines
of the display changing the
colour as we go, using a scheme
like this:

for (i = 0; i<SCREENLINES; i=i+1)
{

Identify new colour 'j' to
be used

Set line 'i' to colour 'j'

}

The variable j must be kept
within the range of colour
numbers suitable for the screen.
The obvious choice is to combine
the changing value of i with a
modulo function so that we
generate a value of j which will
always stay within the chosen

120

Mastering Amiga Programming Secrets
bt it A L TAT L S RS R £ AR I R Y R s

limits like this:
for (i = 0; i<SCREENLINES; i=i+1)

{
j=1i%m
Set line 'i' to colour 'j'

}

If mis set to 5 then j will take values from O to 4 and the colours
used down the screen will follow this pattern: 012340123401
2 3 4 etc. In practice it’'s usually better to produce an oscillating
sequence rather than a direct cycling sequence and so instead of
generating the above pattern we'd opt for one basedona 01234
32101 2 type of arrangement. To do this we have to modify the
generating function slightly. Figure 8.1 shows one arrangement, in
Warnier diagram form, which does the trick:

/
(Variable i represents the current screenline)
SET LINE COLOUR V4modulo2=0 {ncrementj
(1.n times) { (0.1tme)

®

/4 modulo 2 = 2 decrement j
(0,1 time)

Set screen line to colour value j

Figure 8.1. Warnier diagram description of what we are trying to do to produce a
colour shading effect.

The ideas translate to this type of C code:
for (i=0; i<SCREENLINES; i=i+1)
{
if ((i/4) %2 == 0) { j=j+1; } else { j=j-1; }

Set line 'i' to colour 'j'

}

Whilst the above fragment does produce the required result, most C
programmers would tend to use C’s increment/decrement operators

Copper List Shading Event
T P S e e T TR L R

combined with an implied i test, so they’d write the loop like this:
for (i=0; i<SCREENLINES; i++)

{ if ((i/4) % 2) {j—;} else {j++;}
Set line 'i' to colour 'j'
}

Even this form can be improved by using the ternary operator ? to
select the operation performed on j:

for (i=0;i<SCREENLINES;i++)
{
((i/4) % 2) ? j— : j++;
Set line 'i' to colour 'j'

}

That then is one way of generating a set of colour register values.
Now all we need to worry about is how to set a screen line to a
particular colour. One approach, and from a purely design
viewpoint there would be nothing wrong with it, would be to use
some standard line drawing function. We could use the graphics
function SetAPen() to set the pen colour for drawing, then use
Move() to position the pen at the start of a screen line, and finally
use the Draw() function to perform the actual line filling operation.

If we added this type of code to our existing loop we’d end up with
a typical shading routine - this following example uses a screen’s
rastport pointer to completely fill a screen display with an
oscillating colour pattern:

for (i=0;i<SCREENLINES;i++)

{ (i/4) % 2 2 j— @ j++; /* j selects the colour
register */

SetAPen(rastport_p,j); /* set APen to the
required colour */

Move(rastport_p, 0, i); /* move to the start of
the line */

Draw(rasport_p,SCREENWIDTH, i); /* draw the line */

}

You can of course modify the amplitude of the oscillation range -
the expression (i/n) % 2 ? j— : j++; will oscillate between 0 and n
inclusive. Secondly, you can add a fixed amount to the final j value
produced - so that any given oscillating function can be made to
select any chosen range of colour numbers.

122

Mastering Amiga Programming Secrets
[Prsaa o e e S e SR S e L e]

Making the Most of the Amiga’s Hardware

On the Amiga we don’t have to use routines like Move() and Draw()
at all because we can use the Copper to jam colour values into the
appropriate colour registers as the video beam moves down the
screen. Why bother? There are two reasons: firstly, it is faster.
Secondly, once the Copper list has been created the display is
created automatically and the program itself doesn’'t have to worry
about it. Now that the basic mechanism for creating cycling
numbers has been discovered the, crux of the remaining problem is
working out how to build a suitable list of Copper instructions
(which is then linked into the viewport associated with the screen).
Inevitably we do start tangling with the hardware now, but don’t
forget we have already decided what operations are need so the
preliminary analysis has made life somewhat easier for us.

The Copper has three instructions — WAIT, MOVE and SKIP. WAIT is
used to wait for the video beam to reach a particular screen line so
I'll obviously use that to specify a screenline. I'll use MOVE
instructions to force the calculated colour value into the colour
registers, but rather than cycling through many different colours I'll
be using the generated cyclic values as colour intensities and
jamming these into a single colour register. There are obviously a
number of system specific code issues involved and the following
notes will illustrate the basic details:

First we need some space for a UCopList structure. In the following
fragment [am using an AllocMem() call:
user_copperlist_p=AllocMem(sizeof(struct UCoplList),
MEMF_PUBLIC |MEMF_CLEAR);
Next, we use the system macro CINIT to initialise our Copper list
memory:
CINIT(user_copperlist_p,SCREENHEIGHT*2+1) ;
Now we need the Copper instructions themselves. To put things in

perspective Figure 8.2 shows a preliminary Warnier sketch of what
we are trying to do:

Copper List Shading Event

(lime)

Initialize UCopList
(1 time)

SET LINE COLOUR
(1,n times)

/\

Allocate Memory for UCopList structure

/

¥4 modulo2=0
(0,1 times)

®

¥4modulo2=0
(0,1 times)

N

(variable i represents the current screenline

Set screen line to colourvalue j

{increment j

{decrement j

Figure 8.2. A first attempt at describing the actions of a colour shading routine.

Is Figure 8.2 right? No, not quite; the UCopList memory allocation
could fail so we ought to make a check to see that memory was

obtained:

123

124

Mastering Amiga Programming Secrets

ﬁ\llocale Memory for UCopList structure

(0,1 time)
reieiaiiontien s error condition
(0,1 time)
/o
Initialize UCopList
(1 ime) -
@ i represents the curent scrreen line
<
SET LINE COLOUR i/4modulo2 =0 increment j
ALLOCATION OK < (1, n times) (0.1 times)
(0,1 time) '
1/4modulo2 =0 decrement j
(0.1 times)
L Set screen line to colour value j

\ N

Figure 8.3. An improved Warnier sketch of the operations that need to be carried out
to produce a Copper list colour shading ef fect.

I ought to point out that the UCopList initialization process is
handled by a system macro call that allocates the chip memory
which holds the Copper instructions. I've not dealt with this
because the allocation and the deallocation (which includes the
handing back of the UCopList structure memory which we’ve
allocated) is handled transparently.

The Amiga system conventions require three other actions. We
must terminate the Copper list with an impossible wait (you'll have
to see the Amiga hardware manual for details of why), we must link
this newly-created list into the appropriate viewport structure, and
we must remake the display so that our Copper list gets
incorporated.Don't forget that these constraints have been found by
digging around in the RKM manuals - that digging, plus some
thought about what we were trying to do colour-wise, allowed me to
sketch a suitable plan of action. This logical description of what is
needed is now complete and it is provided in figure 8.4 below:

Copper List Shading Event

E—

(1 time)

ALLOCATION OK
(0.1 time)

@

ALLOCATIONOK ¢
(0.1 time)

_/\

N\

-~
Allocate memory for UCopList stru ture

{error condition

/
Initialize UCopList

(1 ime)

SET LINE COLOUR <
(1,n times)

7/

(i represents the current screenline)

/4 modulo2 =0 increment j
(0,1 times)
/4 modulo 2 = 2 decrement j
(0,1 times)

Set screenline to colour value j

"

TERMINATE COPPPER LIST WITH IMPOSSIBLE WAIT

(1 ime)

LINK COPPERLIST TO VIEWPORT

(1 time)

REMAKE DISPLAY
(1 ime)

Figure 8.4. Completed Warnier diagram for the colour shading operations.

Now let’s look at some example code that will put these ideas into

context:

if (user_Copperlist_p=AllocMem(sizeof(struct
UCopList) ,MEMF_PUBLIC|MEMF_CLEAR))

{

CINIT(user_Copperlist_p,SCREENHEIGHT*2+1);
for (i=0;i<SCREENHEIGHT;i++)

{

125

Mastering Amiga Programming Secrets
[S S e R e T e N e e e e e

(1/15) % 2 ? Intensity— : Intensity++;
CWAIT(user_Copperlist_p,i,OL);
CMOVE (user_Copperlist_p,custom.color[0],Intensity);

}
CEND(user_Copperlist_p);

global_viewport_p->UCopIns=user_Copperlist_p;
MakeScreen(global_screen_p); RethinkDisplay();

}

I'm using a loop which works out the necessary instructions for
each screenline, calculating the colour with a function similar to the
oscillating function discussed earlier. The CWAIT system macro
creates Copper instructions which say wait for the video beam
position to reach co-ordinates (J,0). The CMOVE macro produces the
instructions which jams the colour I've calculated into the
background colour register (register 0). The result of the following
loop is therefore a list of Copper instructions which continually
change the value of colour register 0 as the electron beam moves
down the screen. Finally we terminate the Copper list with an
impossible wait instruction (that’s what the CEND system macro
does), link our newly created Copper list into the viewport, and
remake the display.

So that’s it: Grab some memory for a UCopList structure, get the
system to initialize it and allocate its internal list space, use a loop
to generate some wait and jam a value into a colour register
instructions, link the list into the viewport, and then remake the
display. Once you know what you’re doing you can actually squash
the whole Copper list generation thing into three or four lines of C
code; so don’t let anyone kid you that there’s anything inherently
difficult about it. Having said that it is always best to take a bit
more coding space and lay it such code in what will hopefully be an
understandable fashion. Listing 8.1 shows some more code, this
time written as a call-able routine which returns a TRUE error flag if
it is unable to install the designated background shading. To be
honest the routine is not particularly flexible but it is sufficient to
illustrate the principles. The routine installs a blue band shading
Copper list into the Amiga background colour register:

/*Listing 8.1: A typical Copper list based routine for
producing shading effects*/

BOOL InstallBlueBackgroundShading(void)

{

BOOL error_flag=TRUE; /* guilty until proven innocent
approach */

struct UCoplList *user_Copperlist_p=NULL;
COUNT j;

Copper List Shading Event
—

if (user_Copperlist_p=AllocMem(sizeof(struct
UCopList) ,MEMF_PUBLIC|MEMF_CLEAR))

{
error_flag=FALSE;
CINIT(user_Copperlist_p,SCREENHEIGHT*2+1) ;
for (j=0;j<SCREENHEIGHT;j++)
{
(3/15) % 2 ? Blue— : Blue++;
CWAIT(user_Copperlist_p,j,0L);
CMOVE (user_Copperlist_p,custom.color[0],Blue);
}
CEND(user_Copperlist_p);
global_viewport_p->UCopIns=user_Copperlist_p;
MakeScreen(global_screen_p);
RethinkDisplay();
}
return(error_flag);
}

Obviously now that the approach is available many similar routines
become possible. Listing 8.2 shows a useful modification which
toggles the shading (ie turns it on and off) with alternate calls. The
idea is very simple: first we look at the user Copper list pointer to
see whether a user list is already present. If the list exists then the
shading effect is already in place and in this case we remove it and
set the user Copper list pointer back to zero. If on calling the
routine the user list pointer is zero then there is no user list
installed - so we install one! It’s a relatively small extension of the
routine just dealt with although it does involve a number of
addtional system calls (see Includes & Autodocs RKM manual for
full details of the system calls):

/*Listing 8.2: A shading routine that alternately switches

on and removes a Copper list shading effect with each
call*/

BOOL ColourShading(UBYTE colour_number, UBYTE
colour_shade)

{

BOOL error_flag=TRUE; /* guilty until proven innocent
approach */

static struct UCoplList *user_Copperlist_p=NULL;
COUNT j;
UBYTE Intensity=0;

Mastering Amiga Programming Secrets
JURBEr R 2 S S =L S T e S WS P S = A ot

if(global_viewport_p->UCopIns==NULL)
{

if (user_Copperlist_p-=
AllocMem(sizeof(struct UCopList),MEMF_PUBLIC|
MEMF_CLEAR))

{
error_flag=FALSE;
CINIT(user_Copperlist_p,SCREENHEIGHT*2+1);
for (j=0;j<SCREENHEIGHT; j++)
{
(j/15) % 2 ? Intensity— : Intensity++;
CWAIT(user_Copperlist_p,j,0L);
CMOVE (user_Copperlist_p,

custom.color[colour_number],Intensity<<
colour_shade);

}
CEND(user_Copperlist_p);
global_viewport_p->UCopIns=user_Copperlist_p;
MakeScreen(global_screen_p);
RethinkDisplay();

}

}

else {
global_viewport_p->UCopIns=NULL;
MakeScreen(global_screen_p);
RethinkDisplay();
FreeCopList(user_Copperlist_p->FirstCoplList);
FreeMem(user_Copperlist_p,sizeof(struct UCoplList));
user_Copperlist_p=NULL;
}

return(error_flag);

}

As mentioned earlier once you understand the basic principles of
cycling number generation you can modify the ideas to your heart’s
content. As one last example listing 8.3 shows a routine that
generates and installs (or removes) a shading effect involving a
specified Amiga style RGB colour value, a colour register. Internally
the routine isolates these red, blue and green components making
use of static cycle and minimum shading value variables to control
the style of the shading.

Copper List Shading Event
Y U N S L RO S e I

/*Listing 8.3: Yet another colour shading routine modifi-
cation*/

BOOL ColourShading(UBYTE colour_number, UWORD
colour_shade)

{

BOOL error_flag=TRUE; /* guilty until proven innocent
approach */

static struct UCopList *user_Copperlist_p=NULL;
COUNT j;
UBYTE brightness=0x5; /* must be between O and 15 */
UBYTE cycle_max=10,intensity=0;
UBYTE base_red,red,base_blue,blue,base_green,green;
if(g_viewport_p->UCopIns==NULL)

{

if (user_Copperlist_p=
AllocMem(sizeof(struct UCopList) ,MEMF_PUBLIC|
MEMF_CLEAR))

{
error_flag=FALSE;
base_red=(colour_shade&0x0F00)>>8;
base_green=(colour_shade&0x00F0)>>4;
base_blue=colour_shade&0x000F;
CINIT(user_Copperlist_p,WINDOW_HEIGHT*2+1);
for (j=0;j<WINDOW_HEIGHT;j++)
{
(j/cycle_max) % 2 ? intensity— : intensity++;
red=(base_red*intensity)/cycle_max;
if (red<brightness) red=brightness;
green=(base_green*intensity)/cycle_max;
if (green<brightness) green=brightness;
blue=(base_blue*intensity)/cycle_max;
if (blue<brightness) blue=brightness;
CWAIT (user_Copperlist_p,j,O0L);
CMOVE (user_Copperlist_p,

custom.color[colour_number], (red<<8) | (green<<4)
|blue);

}
CEND(user_Copperlist_p);

g_viewport_p->UCopIns=user_Copperlist_p;

129

Mastering Amiga Programming Secrets
BTV R RV EE EEAC A T A SR i A |

MakeScreen(g_public_screen_p);
RethinkDisplay();

}
}

else {
g_viewport_p->UCopIns=NULL;
MakeScreen(g_public_screen_p);
RethinkDisplay() ;
FreeCopList(user_Copperlist_p->FirstCoplList);
FreeMem(user_Copperlist_p,sizeof(struct UCoplList));

user_Copperlist_p=NULL;
}

return(error_flag);

}

Making It Up As You Go Along

Perhaps the most important thing to be gleaned from this chapter is
an understanding of how a series of cycling numbers can be
generated. Remember incidentally that you may not always need to
opt for the dynamic list generation technique that I've discussed.
Sometimes when you know exactly what colours you want you can
just use a static list of colour register data or perhaps even the
equivalent static Copper list instructions. A programmer who uses
680x0 assembler however might well consider it worthwhile to
write a C language Copper list generating untility that stores the
instructions as a series of 680x0 style data statements. This would
allow shading effect data to be read directly into 680x0 source code
files. Similarly the C programmer might wish to have done all the
colour register calculations before the program is run. Listing 8.4 is
the code for a colour register value generating utility. It’s based
loosely on the previous shading routine, that produces a C style
array containing a set of horizontal band shading values but
instead of using the generated colour register values it just writes
them to stdout:

/*Listing 8.4: A colour shade value generating utility*/

/* Shading effect colour-value generator for use in Copper
lists */

/* This utility generates a UWORD c[] colour register data
array using this format...

<line count> {<colour values>}
*/

Copper List Shading Event
—

/t __ */
#include <stdio.h>
#include <exec/memory.h>
#define LINE_COUNT 255
void GenerateColourShadingList(UWORD colour_shade);
/t __ i/
main()
{
GenerateColourShadinglList (OxOFO) ; /* green shading */
}
/t __ */
void GenerateColourShadinglList(UWORD colour_shade)
{
UBYTE j;
UWORD colour_value;
UBYTE brightness=0x0; /* must be between O and 15 */
UBYTE cycle_max=15,intensity=0;
UBYTE base_red,red,base_blue,blue,base_green,green;
base_red=(colour_shade&0x0F00)>>8;
base_green=(colour_shade&0x00F0)>>4;
base_blue=colour_shade&0x000F;
printf("UWORD c[] = {\n"); /* c[] array declaration */
printf("0x%.4x," ,LINE_COUNT); /* line count */
for (j=0;j<LINE_COUNT; j++)
{
(j/cycle_max) % 2 ? intensity— : intensity++;
red=(base_red*intensity)/cycle_max;
if (red<brightness) red=brightness;
green=(base_green*intensity)/cycle_max;
if (green<brightness) green=brightness;
blue=(base_blue*intensity)/cycle_max;
if (blue<brightness) blue=brightness;
colour_value=(red<<8)| (green<<4)|blue;
if(j<LINE_COUNT-1)
{
printf("0Ox%.4x,",colour_value);
if (1((j-2)%4)) printf("\n");

132

Mastering Amiga Programming Secrets
55 T S B R A N 0 T s N RO S R S e e R ity

}
else printf("0Ox%.4x\n",colour_value);
}
printf(*};\n"); /* terminal brace */
}
/'ﬁ __ i/

The sort of output that the program given in listing 8.4 produces
looks like this:

/*Listing 8.5: Typical output from the generator utility
program shown in listing 8.4*/

UWORD c[] = {
0x00ff,0x0010,0x0020,0x0030,
0x0040,0x0050 ,0x0060 ,0x0070,
0x0080,0x0090,0x00a0,0x00b0,
0x00c0,0x00d0,0x00e0,0x000,
0x00e0,0x00d0, 0x00c0,0x00b0,
0x00a0,0x0090,0x0080 ,0x0070,
0x0060,0x0050 ,0x0040 ,0x0030,
0x0020,0x0010,0x0000,0x0010,
0x0020,0x0030,0x0040 ,0x0050,
0x0060,0x0070 ,0x0080 ,0x0090,
0x00a0,0x00b0,0x00c0,0x00d0,
0x00e0,0x00f0,0x00e0,0x00d0,
0x00c0,0x00b0,0x00a0,0x0090,
0x0080,0x0070,0x0060 ,0x0050,
0x0040,0x0030,0x0020,0x0010,
0x0000,0x0010,0x0020 ,0x0030,
0x0040,0x0050 ,0x0060 ,0x0070,
0x0080,0x0090,0x00a0,0x00b0,
0x00c0,0x00d0 ,0x00e0, 0x00f0,
0x00e0,0x00d0,0x00c0,0x00b0,
0x00a0,0x0090,0x0080,0x0070,
0x0060,0x0050 ,0x0040,,0x0030,
0x0020,0x0010,0x0000,0x0010,
0x0020,0x0030,0x0040 ,0x0050,
0x0060,0x0070,0x0080 ,0x0090,
0x00a0,0x00b0,0x00c0,0x00d0,

Copper List Shading Event
B P A e e T L e B e R S

0x00e0,0x00f0,0x00e0,0x00d0,
0x00c0,0x00b0,0x00a0,0x0090,
0x0080,0x0070,0x0060,0x0050,
0x0040,0x0030,0x0020,0x0010,
0x0000,0x0010,0x0020,0x0030,
0x0040,0x0050,0x0060,0x0070,
0x0080,0x0090,0x00a0,0x00b0,
0x00c0,0x00d0,0x00e0,0x00f0,
0x00e0,0x00d0,0x00c0,0x00b0,
0x00a0,0x0090,0x0080,0x0070,
0x0060,0x0050,0x0040,0x0030,
0x0020,0x0010,0x0000,0x0010,
0x0020,0x0030,0x0040,0x0050,
0x0060,0x0070,0x0080,0x0090,
0x00a0,0x00b0,0x00c0,0x00d0,
0x00e0,0x00f0,0x00e0,0x00d0,
0x00c0,0x00b0,0x00a0,0x0090,
0x0080,0x0070,0x0060,0x0050,
0x0040,0x0030,0x0020,0x0010,
0x0000,0x0010,0x0020,0x0030,
0x0040,0x0050,0x0060,0x0070,
0x0080,0x0090,0x00a0,0x00b0,
0x00c0,0x00d0,0x00e0,0x00f0,
0x00e0,0x00d0,0x00c0,0x00b0,
0x00a0,0x0090,0x0080,0x0070,
0x0060,0x0050,0x0040,0x0030,
0x0020,0x0010,0x0000,0x0010,
0x0020,0x0030,0x0040,0x0050,
0x0060,0x0070,0x0080,0x0090,
0x00a0,0x00b0,0x00c0,0x00d0,
0x00e0,0x00f0,0x00e0,0x00d0,
0x00c0,0x00b0,0x00a0,0x0090,
0x0080,0x0070,0x0060,0x0050,
0x0040,0x0030,0x0020,0x0010,
0x0000,0x0010,0x0020,0x0030,
0x0040,0x0050,0x0060,0x0070,
0x0080,0x0090,0x00a0,0x00b0,

Mastering Amiga Programming Secrets
e o e T (v o W T e e e e e e T ST]

0x00¢0,0x00d0,0x00e0,0x00f0

};
Needless to say this colour register data, if directed to a temporary
file, can be subsequently loaded into a C program and the line
count and RGB-content values used directly. In this case the
shading routine is simpler because it only has to read the array
items and use them to build a user Copper list. No colour value

generating code is required. Listing 8.6 provides a typical example
that places data from a given array into a specified colour register:

/ﬁ __ */

/*Listing 8.6: Routines that make use of pre-generated
colour register data are easier to code.*/

BOOL ColourShading(UBYTE colour_number,UWORD a[])
{
static struct UCoplList *user_Copperlist_p=NULL;
COUNT i=0;
if (g_viewport_p->UCopIns==NULL)

{

if(user_Copperlist_p=
AllocMem(sizeof(struct UCopList) ,MEMF_PUBLIC |
MEMF_CLEAR))

{
CINIT(user_Copperlist_p,2*a[0]+1);
for (i=0;i<a[0];i++)
{
CWAIT(user_Copperlist_p,i,0);

CMOVE (user_Copperlist_p,custom.color
[colour_number],a[i+1]);

}
CEND(user_Copperlist_p);
g_viewport_p->UCopIns=user_Copperlist_p;
MakeScreen(g_public_screen_p);
RethinkDisplay();

}
}

else {
g_viewport_p->UCopIns=NULL;
MakeScreen(g_public_screen_p);
RethinkDisplay();
FreeCopList(user_Copperlist_p->FirstCoplList);

Copper List Shading Event
[onsieseos s mema i v s L

FreeMem(user_Copperlist_p,sizeof(struct
UCopList));

user_Copperlist_p=NULL;

}
return(0);
}
/* __ i/

There is an infinite number of variations of these types of
techniques and, as always, the suitability of a particular approach
will depend on exactly what you are trying to do. In the main I tend
to use the dynamic generation approach because during
development it is more flexible than the alternatives — it’s possible
to change colours, change generating functions and so on without
having to worry about the exact form of the resulting Copper lists.
Whatever pathways you tread in these areas do make no mistake
about one thing - as far as all of these shading effects are
concerned the key to success is to understand the underlying
principles of generating the appropriate values in the first place!

135

Mastering Amiga Programming Secrets
| o e o o s S O B s TR S SR YRR YRS A v S | oS TE R R s

How Viruses
Get at the
Amiga
Library
Functions

There seems, at the moment, to
be quite a lot of interest in how
some Amiga programs are able to
both alter selected Amiga
operating system routines at will
(especially when many of the
routines are held in ROM) and
monitor data passed to system
routines by other programs.
Obviously one of the reasons why
these topics interest, and to some
extent scare, a lot of users is
because many computer viruses
do these types of things. There
are of course a number of
legitimate reasons why a program
might want to monitor, or alter,
certain Amiga system routines
but in order to understand both
the virus and the legitimate use
connections we need to take a
few steps backwards and talk
about how the Amiga library
system works. As you'll probably
already know the Amiga’s library
system is extremely flexible with
some library routines being held
in read only memory (ROM) and
others being transparently loaded
into RAM as required.

Programs tell Exec that a library
is needed by attempting to open
it using an OpenlLibrary()
function. When such a call is
made Exec does several things
beginning by searching its lists of
libraries which are already open
and available. If the library is
found then Exec simply returns
the address of the library and
makes an internal note that
another program is now using it.
If the library is not already open
Exec passes on the request to
AmigaDOS asking it to look for,
and then load, the specified

137

Mastering Amiga Programming Secrets
JHER hmiics i A et e R i g e s

library. AmigaDOS looks in the LIBS: logical device (if you boot from
the Workbench disk for instance then this logical device will have
been assigned to SYS:LIBS, ie the LIBS directory of the WorkBench
disk). If AmigaDOS finds the library, it loads it and tells Exec which
then duly records the fact that the library is now available. Exec
incidentally will never attempt to remove these library modules
whilst they are in use but when the last user of a particular library
indicates that it is no longer needed, which they do by executing a
CloseLibrary() function, Exec’s library manager may then remove
the memory copy of library and release the associated memory so
that it is free for other use.

As far as, say, an applications program is concerned, most of these
operations are transparent. All a program has to do to use a given
library is open it using the Exec OpenLibrary() function, and then
use the library routines in much the same way that the
OpenlLibrary() function itself is used. Applications programs which
follow this protocol never need to concern themselves with where
the library routines are in memory, nor with the fact that other
programs may also be using the very same routines.

How Library Access Really Works

A library is basically just a collection of routines. These routines
are not however called directly, they're accessed via a jump table
which is a table consisting of entries that contain JMP instructions
coupled to corresponding target addresses. The base address
returned by the OpenLibrary() call is the address in memory of the
start of a Library structure and this base location actually sits
between this structure and other library specific data (Figure 9.1
provides a schematic illustration of what this data looks like once
set up in memory).

Amiga Library Functions & Viruses
R S e S P e e e e I e e S Sy e e

(High Memory)
Library Specific Data

base address ——p» Library Node Data Structure
jump to OPEN routine
jump to CLOSE routine
jump to EXPUNGE routine
jump to RESERVED routine
jump to 1streal user library function

jump to n'th real user library function

(Low Memory)

V

Figure 9.1. The ‘in-memory’ library access arrangements.

The first four function jump entries OPEN, CLOSE, EXPUNGE and
RESERVED are for system only use. OPEN is an entry point called
when the library is opened and is the routine responsible for
incrementing the count of the number of users of a particular
library. CLOSE is a corresponding routine which decreases the user
count and, when the count gets to zero (ie the last library user
indicates that the library is no longer needed) it may perform an
EXPUNGE operation to prepare the library for removal. The
RESERVED vector is, incidentally, currently unused.

To execute a particular library routine you use the opened library’s
base address in conjunction with a negative displacement that
indicates which routine you wish to jump to (these offsets are
called library vector offsets or LVO values). In a sense then you can
associate these LVOs values with the corresponding in memory
Jjump table as Figure 9.2 illustrates.

Mastering Amiga Programming Secrets
BTN PR S N L AT S B, TSRS T Y T o T AT A A il

(High Memory)

Library Specific Data

base address —® Library Node Structure

LVO-6 OPEN

LVO-12 CLOSE

LVO-18 EXPUNGE

LVO -24 RESERVED

LVO -30 1st user function

LVO -36 2nd user function etc.
(Low Memory)

Figure 9.2. The relationship between LVO values and the library routines.

To call a library function on the Amiga you place the base address
of the library in register a6, and then make an indirect subroutine
call using the appropriate library vector offset (LVO) value. Let’s
take a concrete example. As you'll doubtless know, Intuition
contains a DisplayBeep() function which can be used to flash an
Intuition screen and the bare bones code for a DisplayBeep() call
will look something like this:

move.l _IntuitionBase, a6
jsr __LVODisplayBeep(a6)

and would result in program control branching to the
_LVODisplayBeep table entry of the library-structure/jump-table
unit which was set up in memory when the Intuition library was
opened. The jump table entry then branches to the real library
routine.

Vanishing Vectors!

So, access to all Amiga library routines, whether they exist in RAM,
or ROM, occurs indirectly using a series of library specific RAM-
based jump table vectors. Once the purpose of these jump tables is
understood the mechanisms used to modify system functions
become almost obvious because in order to appear to change or
replace a library routine, all you need to do is alter the appropriate
jump table vector!

Let’'s get one thing clear: these types of changes do have legitimate
uses and the 1.3 SetPatch function for instance made such changes
in order to replace some bugged system functions. On a less official

Amiga Library Functions & Viruses
O i S e i U e O e P R L e Bt oy e SR

level a Workbench 1.3 based program might choose to replace the
DisplayBeep() routine so that an audible beep rather than a screen
flash was provided. The Amiga’s Exec library does in fact contain a
SetFunction() routine which allows a program to reset a library
vector in this way and if for example | wanted to replace the
Intuition DisplayBeep() function (which has an LVO value of -
0x0060) with some alternative routine called MyF(), I'd do it like
this:
old_p=SetFunction(IntuitionBase,-0x0060, (APTR)MyF);

and from that point on any program which called DisplayBeep()
would end up executing my routine, called MyF(), instead.

As SetFunction() changes a library vector it returns the address of
the original routine and this means that the original DisplayBeep()
routine could be re-instated using this type of code:

SetFunction(IntuitionBase,-0x0060,0l1d_p);

Function Name: SetFunction(

Description: Changes a function vector in a library

Call Format: old_function=SetFunction(library_p,offset, =entry_point)
C Prototype: APTR SetFunction(struct Library *, LONG, APTR);

Registers: AOAl A0 DO

Arguments: library_p - library base pointer offset - LVO offset
of function to be replaced entry_point - pointer to the
O/new function

Return Value: old_function - pointer to function that was replaced.

To appreciate the whole picture we need to look at a potential
replacement routine and by way of example listing 9.1 shows a
simple 68k patch that double calls the Intuition DisplayBeep()
function. It executes DisplayBeep() in the normal fashion, waits for
one second (using AmigaDOS’s Delay() function), and then executes
DisplayBeep() again. By using SetFunction() to insert a vector to this
routine in the Intuition library’s jump table the routine would then
be entered by all programs and system functions that make a
DisplayBeep() library call.

The result in this case is harmless — all programs calling the
DisplayBeep() Intuition function would end up flashing the screen
twice, when they thought they were flashing it once!

Listing 9.1: A 68k assembler patch which fools other pro-
grams into double calling the DisplayBeep() function.*/

_LVODelay equ -$00c6

xdef _MyF
xref _old p
xref _DOSBase

Mastering Amiga Programming Secrets

—

xref _DOSBase
_MyF: move.l a0,screen save screen address
movea.l _old_p,al real DisplayBeep() function
address
jsr (a1) do first DisplayBeep()
jsr delay wait 1 second
movea.l screen,al
movea.l _old_p,at
jsr (a1) do second displayBeep()
rtsdelay: move.l a6,-(sp) preserve _IntuitionBase
movea.l _DOSBase,a6
move.l #50,d1 di = 50 ticks = 1 second
jsr _LVODelay(a6)
move.l (sp)+,a6 restore _IntuitionBase
rtsscreen: dc.1 1

Although replacing the original DisplayBeep() vector would, in this
particular example, serve little purpose, the general implications of
such changes are extremely important. In this case, once the
replacement routine is in place, other programs will think they are
using the DisplayBeep() function as originally written when they are
not!

Equally disconcerting of course is the fact that those programs can
do nothing to avoid calling the modified routine. A lot of virus
programs use exactly this approach to redirect important function
calls, like Exec’s DolO(), through their own routines and such
routines obviously have access to all the 680x0 register information
provided for the original function call. All however is not lost and
in fact most virus check programs do look at the most important
jump table vectors, such as those relating to the Exec library and
trackdisk device, to ensure that they are not changed in this way.

10:

Music, Midi,
and the MPX
File
Connection

This chapter is the first of two
that concern Midi files and Midi
serial port use. Just in case you
are not yet Midi literate I'm going
to start with a few preliminary
notes on Midi itself. That way
you'll be able to appreciate the
general ideas even if the subject
itself is new to you.

From a purely technical viewpoint
Midi is a communications scheme
that has been designed to allow
standardized messages to be
passed between pieces of musical
equipment (synthesizers, drum
machines etc). What this means in
practice however is that Midi
allows you to connect together all
sorts of different pieces of
musical equipment (from any
number of manufacturers) and,
providing a few ground rules are
followed, they’ll all work together
quite happily. That in itself is
quite an achievement but Midi
has done far more than this: it
has allowed computers to be used
to read, store, edit and replay
those messages (acting like a
digital message tape-recorder)
and this has led to a development
which has turned the music world
upside down. I'm talking here
about the Midi sequencer. Not
only has sequencing made life
easier for the competent musician
but it has opened the doors for
everyone else. It is no
exaggeration to say that the
sequencer has made it possible
for anyone with the slightest ear
for music to play things that
sound good without having to
spend years mastering a musical
instrument. In many ways then
the sequencer is to the music

Mastering Amiga Programming Secrets
R o e s T ¥ P e o T T b el e

world what the word-processor is to the secretary. Midi, as I've
already mentioned, is a serial communications standard and Midi
messages are sent as streams of pulses (much like the data that is
passed through a printer cable or a modem). Each eight bit byte is
sent as a start bit, eight data bits, and a stop bit at a speed of 31.25
KiloBaud. That's about one byte of Midi information every 320
millionths of a second. Midi equipment usually has two or three
five pin DIN sockets. The terminal marked Midi-In is where the
equipment receives its Midi data, that marked Midi-Out is where
data is transmitted. Usually you'll also find a Midi-Thru socket and
this provides a duplicate of whatever is being received at the Midi-
In terminal. Not all types of equipment will understand all types of
messages, nor does every piece of Midi equipment send every type
of message but this doesn’t usually cause much in the way of
problems - providing you know what types of messages your
particular equipment is capable of sending and understanding.

Midi messages are sent then as streams of eight bit numbers and it
is the Midi standard which has defined their meaning. The first byte
of a Midi message is called a status byte and it acts as a message
identifier, ie it enables the receiving equipment to tell what type of
message is coming in. Subsequent bytes of the message, if indeed
they exist, are known as data bytes. How does Midi distinguish
between status bytes and data bytes? It has opted for using the
uppermost bit of each byte. Status bytes always have the high bit
(bit 7) set so these numbers can range from 10000000 binary to
11111111 binary (decimal 128 to decimal 255). Because bit 7 is
effectively used as a status byte indicator all data bytes are
restricted to values ranging from 00000000 binary to 01111111
binary (decimal O to decimal 127).

Midi recognizes the existence of 16 separate channels and a large
class of Midi messages, known as Channel messages, contain a
channel number encoded within the status byte of the message.
Pieces of equipment can therefore be selective about the messages
they make use of and the result is that it is possible to have
drummers, sequencers, synthesizers etc, all attached to each other
via a single Midi communications cable loop. By setting up each
unit to respond to a different Midi channel all of the Midi messages
can be sent down the same set of cables with each unit responding
to only those messages that have the matching channel number
identification.

It’s a bit like someone writing a letter to you, sticking it in a
addressed envelope and posting it — the letter, along with
thousands of others, gets carried around the postal system but, as
far as reading the contents goes, it is essentially ignored until it
arrives at your front door, ie its final destination. You know the
letter is for you because it has got your name and address on it —
Midi units know when a channel message has arrived for them

Music, Midi, and the MPX File Connections
—

because they will have a suitable channel number built into the
message’s status byte. So, Midi messages are streams of numbers
whose meanings have been defined by the Midi standard. When do
these numbers get transmitted? It’s usually when you do
something, touch a control knob or press a note on a keyboard etc.
On a synthesizer, streams of numbers which represent such things
as the notes being played and controller information, will be
transmitted at the Midi-Out terminal. Other types of Midi
equipment send similar streams of numbers and because the
meanings of the numbers are standardized one piece of Midi
equipment is able to understand another piece of equipment’s
messages. To get one unit to talk to another you simply use a Midi
lead to connect them together using the appropriate Midi In/Out
terminals. When you hit a note on a synthesizer keyboard for
instance three pieces of Midi data actually get transmitted: a status
byte which says ‘here comes a message about a note being hit’, a
number representing the particular note in question, and lastly a
number which indicates how hard the note was hit. The status byte
includes details of which Midi channel is being used so after a
program has read these three pieces of data it will be able to tell
firstly that you've hit a note on the keyboard, secondly which Midi
channel you're using, thirdly which note you hit and lastly it will be
able to measure of its loudness (ie it will know how hard you hit the
key).

Unfortunately all commerical sequencer programs tend to adopt
their own file format arrangements for storing Midi information to
disk and so to aid users in moving sequencer data between
different sequencers a Standard Midi File format has been designed
which nowadays most sequencers also support.

Standard Midi and MPX Format Files

Midi files come in three flavours, called types 0, 1 and 2. Type O is
essentially a single stream of events that is meant to be played in
much the same way as a single track of sequencer data. They are
actually ideal for playing because only a small amount of
translation work has to be done by the player program. Type 1 Midi
files were designed for transferring multiple track Midi sequences
between sequencer programs. Programs which play type 1 files
have to be more sophisticated because the events from the various
track chunks have to be rearranged to place them into the right
order for playback. Type 2 Midi file files are quite rare - they were
designed to allow the storage of multiple related sequences (eg the
separate verses and choruses of a song could be stored in a type 2
file) but do not seem to be used much.

Top end Amiga sequencers like Blue Ribbon’s Bars & Pipes
Professional and Dr T's KCS, whilst being great packages for editing
sequences, are expensive, memory hungry, beasts whose power is

Mastering Amiga Programming Secrets
PPt e A s S TN R DI L S 2 G S e e b i

totally wasted when it comes to playing back completec
compositions. To be honest all you need for Midi file playback
purposes is a reliable, reasonably priced and easy to use produc
that is capable of reading and playing back the contents of a Mid
file.

One would perhaps have thought that plenty of Midi file playel
utilities would have appeared in the public domain. Unfortunately
this does not seem to have been the case and the main reason is
that the parsing (ie reading and interpreting) and playing of a Mid
file in real time is not a particularly easy a job. Needless to say
adding Midi file playing capability to your own programs is likewise
not easy, but there is an alternative approach based on the use of ¢
much simpler file format that I've adopted called MPX, and this
works like a dream.

MPX files start with a header event that looks like this:
8 byte Header: <4 bytes MPX1 header>
<4 bytes spare>
followed by a set of events that have this format:
8 byte Data: <4 bytes absolute event time (microseconds)>
<1 byte Midi message length>
<Midi message itself>

Each event is padded to 8 bytes in length and for efficiency all
duplicate status bytes will have been removed from consecutive
Midi messages with message lengths adjusted accordingly. At the
end of the day the Midi events in an MPX format file are just a
stream of times plus real events that can played by reading the
event time, executing a suitable delay, reading the event's length,
and then transmitting the appropriate number of bytes via the
serial port. Having sent one event you then read the next time
value, do the next delay, and transmit the next event ad infinitum
until the end of the file is reached. In order to play a file in this way
you do of course need to be able to convert a Midi file into MPX
format and that's where the following utility comes in handy.

MidiWriteX

This Shell utility, which you'll find on the disks accompanying the
book, will convert a Midi file into its equivalent MPX form. It uses
this sort of template:

MidiWriteX <source_filename destination_filename>

So if you want to translate a Midi file called mysong.mid on drive
df0: into an MPX file called mysong.mpx you’d do it like this:

MidiWriteX dfO:mysong.mid dfO:mysong.mpx

The .mpx filename extension isn’t a requirement — MPX files will be
recognised whatever you decide to call them. Renaming files with

Music, Midi, and the MPX File Connections
___|

an .mpx extension is however a useful convention to adopt because
you'll then be able to recognise these files very easily. The
corresponding MPX files produced are, incidentally, always larger
than the Midi files from which they are derived but despite the size
penalty they do have a big advantage of being easy to play because
all the difficult Midi File event unpacking has already been done.
Consequently adding MPX file playing capability to a program is, as
we shall see shortly,a very easy thing to do. In order to play Midi
data out through the Amiga’s serial port however you do of course
need to know how to use the Amiga’s serial device.

Devices - An Introduction

Exec is said to provide standardized device independent /0. A
better description would be that it tries to make the 1/0 operations
as uniform and as device independent as possible given the
differing physical and electronic characteristics of the various bits
of hardware involved. It's achieved by providing library routines
which work with standardized blocks of data called 1/0 request
structures. Device commands themselves fall into two categories:
firstly, there are the standard commands, ie those which are
designated as being common to all devices. Secondly come the
commands which are device-specific.

All 1/0 requests are handled by setting up a data block which
contains information relative to the request. The basic 1I/0 request
structure is called an IORequest and it looks like this:

struct IORequest ({
struct Message *io_Message;

struct Device *io_Device;

struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;

}s
The io_Message field points to a message header used by the
device, io_Device points to a Device structure and io_Unit to a
particular instance of the device. Units share the same device
structures, code modules etc, but they operate independently. A
typical example are the Amiga’s floppy drives — each drive is
represented as an independent unit of the same device where one
device structure and one set of code modules support all the drives
present. The io_Command field must be set to one of the allowable
device commands and neither this, nor the ReplyPort which the
device uses to communicate with your program, are changed by the
servicing of the request - this facilitates the repeated use of the
request block. io_Flags is used to indicate special options, and the

Mastering Amiga Programming Secrets
L e i N T e B e e 28

last field io_Error is used to return the request’s success/failure
indicator (field is set to zero if the request was successfully carried
out and to a non-zero error value if a problem occurred).A number
of devices use an expanded request unit based on this I0StdReq
structure:
struct IOStdReq {

struct Message *io_Message;

struct Device *io_Device;

struct Unit *io_Unit;

UWORD io_Command;

UBYTE io_Flags;

BYTE io_Error;

ULONG io_Actual; /* bytes actually transferred*/

ULONG io_Length; /* number of bytes to be transferred*/
APTR io_Data; /* pointer to a data transfer buffer*/
ULONG io_Offset; /* an offset field used by some devices*/

}s
The serial device uses these type of entities but it adds serial
device specific data using this IOExtSer structure:

struct IOExtSer ({
struct I0OStdReq IOSer;/* field discussed earlier*/
ULONG io_CtlChar; /* control characters */
ULONG io_RBuflen; /* serial port read buffer length */
ULONG io_ExtFlags; /* additional, extension, flag set */
ULONG io_Baud; /* baud rate of serial transmission */
ULONG io_BrkTime; /* duration of break signal */
struct IOTArray io_TermArray; /* terminal character set */
UBYTE io_ReadlLen; /* bits per read character */
UBYTE io_Writelen; /* bits per write character */
UBYTE io_StopBits; /* number of stop bits */
UBYTE io_SerFlags; /* Serial Flag set */
UWORD io_Status; /* see devices/serial.h for details */
}s
Most of these fields are set to reasonable default values by the
OpenDevice() function so in general you'll only need to worry about
actually setting a parameter if you need to use a value which is
different to the default value. Here for reference though are some
details of the fields which may be set/altered: io_CntChar - this
four byte field specifies the control character bytes to use for XON,

XOFF, INQ and ACK although at present INQ/ACK handshaking is
NOT supported. io_RBufLenField specifies the size of the buffer to

Music, Midi, and the MPX File Connections
|

be used for collecting incoming data. It must have a size of at least
64 bytes and should not be changed whilst the device is receiving
data (the device will almost certainly discard the contents of the old
buffer as it installs the new buffer).

io_ExtFlags

This can be used to select mark or space parity (see RKM manuals
for further details). If not used the whole of this field must be set to
Zero.

io_Baud

Any value, from 1 to over 4 million, can be placed here but if the
value cannot be supported by the hardware then the device will
reject it. Baud rates over 19,200 need a few special tricks to ensure
that data does not get lost - special corner—cutting provisions for
Midi data (which uses a 31,250 baud rate) are provided.

io_Brk

TimeThis allows the user to define (in microseconds) how long a
serial line break condition lasts.

io_TermmArray

This is a nice flexible array-based approach to End-Of-File character
collection. You fill the array with up to eight different EOF
terminators (because of the way the array is searched these have to
be arranged in descending order). The two things to bear in mind
are: firstly, that you do have to provide eight entries so if, for
instance, you only want to define one EOF value you'll need to set
eight identical values in this array. Secondly, the EOFMODE flag
must be set in the serial flags field because of this is not done the
serial device ignores the io_TermArray altogether.

io_ReadLen/io_WriteLen
These tell the serial device how many bits should be present per

character on the data being read and transmitted (normal values are
7 or 8).

io_StopBits

Tells the device how many stop bits should be produced when
writing serial data (and expected when reading serial data).
Normally set to either 1 or 2.

io_SerFlags

The devices/serial.h system header file provides a number of flag
definitions which are recognized by the serial device. The default
values of all of these flags is zero (ie not set):

SERF_EOFMODE : If you want the serial device to check
io_TermArray then you will need to set this flag. It is
incidentally the only flag that can be set/reset directly (ie
without using the conventional set parameters function

149

Mastering Amiga Programming Secrets
R e e

described later).

SERF_PARTY_ODD: Selects odd parity. Default (flag clear) condition
selects even parity.

SERF_PARTY_ON: If this flag is set parity usage and checking is
enabled.

SERF_QUEUEBRK: If set then all break commands will be queued.
The default setting is that this flag is clear and in this case
any break command received will take precedence over other
serial output already queued.

SERF_RAD_BOOGIE: What a great name for a flag. If you set it the
serial device will use a high-speed mode which by-passes
some of its internal data checking operations. There are
however some do’s and don’ts associated with the use of this
flag because: you must have disabled parity checking, you
must have disabled XON/XOFF checking, you must be
reading/writing 8-bit characters, and you should not expect to
test for break signals!

SERF_SHARED: By default the serial device opens assuming that the
user wants exclusive access. Setting this flag before opening
the serial device will allow other tasks serial device access. In
general this is not a wise move but it could be useful in some
carefully controlled multi-program environments.

SERF_XDISABLED: If set this flag disables XON/XOFF handshaking.
SERF_7WIRE: Forces the device to use seven-wire handshaking for
RS232C communications instead of the default three-wire

arrangement (based on pins 2, 3 and 7). Flag must be set
before device is initially opened.

Device Commands

Exec devices in general are expected to respond to at least eight
standard commands. The term respond however does not mean
execute properly - if a device cannot carry out one of these
commands (and you would not, for instance, expect to be able to
read data from a printer device) the device should return a suitable
error code.The following commands are defined in the exec/io.h
system file:

CMD_CLEAR

This clears all internal device buffers (without doing a CMD_UPDATE
first). All existing data is lost.

CMD_FLUSH

This command aborts all queued 1/0 requests.

CMD_READ

This command will try to read a number of bytes, as specified in

Music, Midi, and the MPX File Connections
e e e I s e e e S e R N TR

the request block’s io_Length field, into the data buffer. The number
of bytes actually read will be returned in the io_Actual field (this
field should be checked to ensure that the expected number of
bytes were read).

CMD_RESET

This command initializes a device returning any parameters to their
default settings. Any impending requests are aborted and all
buffers etc, are effectively cleared.

CMD_START

Used to re-start a device after a CMD_STOP command. 1/0 request
handling then continues as per normal with any requests that may
have been queuing being handled first.

CMD_STOP

This command stops the device at the earliest opportunity. /0
requests continue to queue but are not serviced.

CMD_UPDATE

This command forces the device’s internal memory buffers to be
written to the physical device - under normal circumstances the
device should perform such operations automatically anyway.

CMD_WRITE

This command will try to write a number of bytes, as specified in
the request block’s io_Length field, from the data buffer. The
number of bytes actually written will be returned in the io_Actual
field (again this field should be checked to ensure that the expected
number of bytes were read).The serial device supports seven of the
standard device commands - CMD_CLEAR, CMD_FLUSH, CMD_READ,
CMD_RESET, CMD_START, CMD_STOP and CMD_WRITE.

It also supports these three non-standard commands.
SDCMD_BREAK

This is used to send a break signal (results in the serial line being
held low for a user-defined, relatively long, period.

SDCMD_QUERY

This command returns a snapshot of the serial port’s lines and
registers. Details can be obtained from the RKM serial device
autodocs.

SDCMD_SETPARAMS

This enables the serial port parameters to be changed. Within the
MidiPlayX program you’'ll find a routine called SetHighSpeedSerial()
that uses this command, in conjunction with a DolO() call that I'll
discuss later, to set up the serial device for Midi transmission. The
required Midi values are set up and a SDCMD_SETPARAMS command
issued like this:

Mastering Amiga Programming Secrets
e R N T i i e e e e]

g_serial_request_p->io_SerFlags=SERF_SHARED|SERF_XDIS-
ABLED| SERF_RAD_BOOGIE;

g_serial_request_p->io_RBufLen=BUFFER_SIZE;
g_serial_request_p->io_Baud=Midi;
g_serial_request_p->io_ReadlLen=8;
g_serial_request_p->io_Writelen=8;
g_serial_request_p->io_StopBits=1;
g_serial_request_p->I0Ser.io_Command=SDCMD_SETPARAMS;
if ((DoIO((struct IORequest *)g_serial_request_p))!=NULL)
etc.

Opening and Closing A Device

As mentioned Exec I/0 is always performed using [/0 request
blocks. Before I/0 can be successfully achieved however the blocks
must be properly initialized (by both the system and the user).
Providing this has been done the device can be opened and this is
done in much the same way as one would open a library. The Exec
system function which performs this is called OpenDevice() and,
since all devices opened by a program must be closed before the
program terminates, Exec also provides a corresponding
CloseDevice() function.

Function Name: OpenDevice()

Description: This function opens the specified device unit (completing
any further initialization of the request block as it does so0).

Call Format: error=OpenDevice(name_p, unit, io_request_p, flags);

C Prototype: BYTE OpenDevice(char *, ULONG, struct IORequest *,
ULONG),

Registers: DO OpenDevice(A0, DO, Al, DI)

Arguments: name_p - pointer to device name

unit - unit number of the device to open

io_request_p - pointer to a request block

flags - additional info (device specific)
Return Value: error - success/failure indicator

Notes: when specifying a device name you should bear in mind
that Exec filenames are case sensitive!

Music, Midi, and the MPX File Connections
. __]

Function Name: CloseDevice()

Description: This function closes a specified device unit.

Call Format: CloseDevice(io_request_p);

C Prototype: void CloseDevice(struct IORequest *);

Registers: CloseDevice(Al)

Arguments: io_request_p - pointer to a request block

Return Value: None

Notes: All outstanding /O requests must have been
completed (or aborted) before closing the device.

The function calls are perfectly straightforward to use and,
needless to say, | place these operations into my standard stack
based allocation scheme. Listing 10.1 shows the device opening
function you’ll find me using within the example code along with
the corresponding closing routine.

/*Listing 10.1: Allocator based device opening and closing
code*/

UBYTE OpenSerialDevice()

{

UBYTE error_number=NO_ERROR;
g_serial_request_p->io_SerFlags=SERF_SHARED;

if((OpenDevice(SERIALNAME,O,(struct IORequest
*)g_serial_request_p,0))!=NULL)

error_number=STARTUP_ERROR;

else {
g_function=CloseSerialDevice;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

}

void CloseSerialDevice()

{

CloseDevice((struct IORequest *)g_serial_request_p);

}

153

Mastering Amiga Programming Secrets

Amiga Lib Support Functions
The basic ideas of opening a device, using it via a combined set of
standard and non-standard commands, and closing it when you've
finished using it are simple enough. In practice the issues are
complicated by the fact that a fair amount of initialization has to be
done and that includes setting up a reply port so that the device
has somewhere to deliver its messages to. Fortunately four
additional functions are provided in the amiga.lib library that make
life that much easier. The first two simplify the creation and
deletion of message ports, the second two allow you to create and
delete extended IORequest structures:

Description:
Call Format:
C Prototype:
Arguments:

Return Value:
Notes:

Function Name: CreatePort()

Set up (allocate and initialize) a message port
port_p=CreatePort(name_p, priority);

struct MsgPort *CreatePort(char *, LONG);

name_p - pointer to NULL terminated string

priority - priority value (used to position the port in the
public port list).

port_p - pointer to a new message port.

If a NULL name is provided the port is not added to
Exec's public port list. Since such ports cannot be
found by usingthe Exec FindPort() function they are
termed ‘private'.

Function Name: DeletePort()

Description: Delete a message port

Call Format: DeletePort(port_p):

C Prototype: void DeletePort(struct MsgPort *);
Arguments: port_p - pointer to the message port.

Return Value; None

{

else {

Again the use of these functions is very straightforward as you'll
see from the MidiPlayX source listing. Reply port creation for
instance is done like this:

/*Listing 10.2: Allocator based reply port creation*/
UBYTE CreateSerialReplyPort(void)

UBYTE error_number=NO_ERROR;
if((g_serial_reply_port_p=CreatePort(SERIALNAME,O))==NULL)

error_number=STARTUP_ERROR;

g_function=DeleteSerialReplyPort;

Music, Midi, and the MPX File Connections
. ___|

PushStack(g_resource_stack_p,g_function);

}

return(error_number) ;

}

[Note: If you look in the official literature you will incidentally find
that there are CreateMsgPort() and DeleteMsgPort() functions
available in the exec library (from V36 onwards). The advantage of
using these functions is that you do not have to link with amiga.lib.]

Function Name: CreateExtlOQ
Description: Create an IORequest based structure
CallFormat: io_request_p=CreateExtIO(reply_port_p, size);
C Prototype: struct IORequest *CreateExtIO(struct MsgPort *,
ULONG);
Arguments: reply port p
- pointer to an INITIALIZED message port
size - size of the [/Orequest block needed

Return Value: io_request_p - pointer to the new /O request structure
or NULL if function jailed.

Notes: Normally size is determined by using sizeof() in
conjunction with the extended device specific structures
defined in the systemn headers.

Function Name: DeleteExtlO()

Description: Delete an IORequest based structure

Call Format: DeleteExtIO(io_request_p);

C Prototype: void DeleteExtIO(struct IORequest *);

Arguments: io_request_p - pointer to an /O request
block.

Return Value: None

[Note: Again, if you look in the official literature you will
incidentally find that there are CréatelORequest() and
DeletelORequest() functions now available in the exec library (from
V36 onwards). |

Device Use Summary

If you extract the general ideas from the previous discussions you'll
see that a recognisable pattern is emerging for the use of Amiga
devices:

1. Use CreatePort() or the equivalent exec function to create a
reply port for the device to send its messages to.

2. Allocate and initialize a suitable device I/0 request structure
by using CreateExtlO() or the equivalent exec function .

155

156

Mastering Amiga Programming Secrets
e N N S T g T e T T e N

3. Open the device using the OpenDevice() function.

Use the device for as long as required via any standard or
non-standard device calls which are available.

5. Close the device using the CloseDevice() function.

Delete the I/0 request structure using DeleteExtIO() or the
equivalent exec function.

7. Delete the reply port using DeletePort() or the equivalent exec
function.

The setting up and closing of the various entities can seem a bit
like hard work. Luckily once the device is up and running sending
commands to it is easy.

The DolO() Standard Interface Function

There are a number of Exec functions reponsible for interfacing 1/0
requests and these operate independently of the particular device
in question (essentially they deal with the request block as a whole
and ignore the contents of the block). The one that I'll be using in
this chapter is called DolO():

Function Name: DolO(

Description: This initiates an I/O request and waits for it to camplete.
In other wards it performs synchranous I/O.

Call Format: error=DolO(io_request_p);

C Prototype: BYTE DolO(struct IORequest *);

Registers: DO DolO(Al)

Arguments: io_request_p - pointer to an initialized I/O request
block

Return Value: error - NULL if operation was successful otherwise the
returned value is a (device specific) error number.

Notes: This function asks the device driver to perform the
requested /O operation and then waits until the
operation is complete (it will try to use quick /O if
possible).

Timer Device

The Amiga’s timer device use follows the same broad plan as any
other device and it is necessary to set up a reply port and a request
block before opening the device. You'll see from the accompanying
listings that there is a lot of common ground between serial device
and timer device code during the initial setting up stages. I'll be
setting the timer device up in what's called UNIT_MICROHZ mode
using a TR_LADDREQUEST command coupled with DolO() call. This
results in the timer device waiting for the specified time period
before replying to my time interval request. The timer device use
within the MidiPlayX program will be quite easy to follow but the
timer device is capable of much more sophisticated uses. For more

Music, Midi, and the MPX File Connections
T T 1 A SN Sy S T U o i S D Vi e B N - s o)

complete details of timer device use you should consult the official
Amiga literature.

MidiPlayX
With the device related issues now safely out of the way we can
now talk sensibly about the overall structure of MidiPlayX - an
AmigaDOS style command that can play MPX format files. By
looking at the coding for this utility you should be able see what
has to be done to incorporate MPX playing into your own code.
The command itself uses this command template:

MidiPlayX <filename>
The program uses my conventional resource allocation method, in

this case setting up and opening serial and timer devices using an
allocation list that looks like this:

UBYTE (*display_list[])() = {

CreateSerialReplyPort,

CreateSerialRequestBlock,

OpenSerialDevice

SetHighSpeedSerial,

CreateTimerReplyPort,

CreateTimerRequestBlock,

OpenTimer

}s
Providing the allocation stages are successful the program simply
calls a PlayFile() routine passing to it the name of the file that was
provided on the Shell command line. Once the PlayFile() routine
terminates, the program deallocates its resources in the usual

fashion. Here's the loop that provides control of the startup, file
playing and closing down operations:

if(!AllocateResource(DISPLAY_COUNT,display_list))
{ '
if(PlayFile(argv[1])) printf(MISSING_SOURCE) ;
}

while(!PopStack(g_resource_stack_p,g_function)) g_func-
tion();

KillStack(g_resource_stack_p);

}

File playing, as I've already mentioned, is straightforward because
of the simple structure of MPX files. Accurate timing however is
obviously of paramount importance if the song being played is to
sound right and so one of the first things that the PlayFile() routine

Mastering Amiga Programming Secrets
e e e e e e e O e B e N]

does is bump up the MidiPlayX task priority like this:
g_task_priority=SetTaskPri(FindTask(0),BUMPED_PRIORITY);

The specified file is then opened and checked for suitable header
info using this sort of code:

file_id=Read4BytesFromChunk(source_p);
if(file_id==ID_MPX1)

{ etc.

Event handing itself is also easy. We use a loop that reads each 8
byte event and works out the required time delay by subtracting
the event time of the current event from the event time of the
previously read event and then, after any time delay required,
transmits the message via the serial port using a conventional
DolO() command.

Here's the framework of the loop that you'll find in the PlayFile()
routine:
while(fread(g_Midi_message,8,1,source_p))

{
delay=*((ULONG *)g_Midi_message)-g_absolute_time;

g_absolute_time=*((ULONG *)g_Midi_message);
if(delay)
{

Do a time delay (see later source for details)

}
TransmitMessage((UBYTE)g_Midi_message[4]);

}

This PlayFile() routine is simple and short and all a program has to
do to incorporate MPX file playing capability is to incorporate this
code along with the SetTimer(), TransmitMessage() and
Read4BytesFromChunk() support routines (obviously the serial and
timer device handling code needs to be present as well). Set up and
open the serial and timer devices and then just pass the name of
the file to be played to the PlayFile() routine. The MidiPlayX utility
was written primarily to show you what needs to be done and since
it is relatively small here to finish this chapter is, for ease of
reference, the complete source for the program:

/* ittt t -ttt :ttttt */
/* Module name: Midiplayx.c - contains the MidiPlayX pro-
gram code

/t .. */

#define ALLOCATE_GLOBALS
#include “"general.h”

Music, Midi, and the MPX File Connections
[T T R B G O L VA A A SO TN S P e T M NG RS SN

#define MakeID(a,b,c,d) ((LONG) (a)<<24L | (LONG)
(b)<<16L | (c)<<8 | (d))

#define ID_MPX1 MakeID('M','P','x','1')

#define DISPLAY_COUNT 7

_ buffsize=MidiFILE_BUFFER_SIZE;

UBYTE (*display_list[])() = {
CreateSerialReplyPort,
CreateSerialRequestBlock,
OpenSerialDevice,
SetHighSpeedSerial,
CreateTimerReplyPort,
CreateTimerRequestBlock,
OpenTimer
¥

main(int argc, char *argv[])

{

UBYTE error_number=NO_ERROR;

printf (SIGN_ON);

if(!l(g_resource_stack_p=CreateStack(void *))) error_num-
ber=NO_STACK;

else ({
/* attempt to allocate resources... */
if(!AllocateResource(DISPLAY_COUNT,display_list))
{
if(PlayFile(argv[1])) printf(MISSING_SOURCE) ;
}

while(!PopStack(g_resource_stack_p,g_function))
g_function();

KillStack(g_resource_stack_p);

}

return(0);
}
/* Logical end of program */
/t __ */
UBYTE AllocateResource(UBYTE count,UBYTE (*list[])())
{
UBYTE i, error_number;
for (i=0;i<count;i++)

Mastering Amiga Programming Secrets
T S Y S T e O e Y e e O TP B WY ST

{
if(error_number=list[i]())
{
printf("%s %d\n" ,CANNOT_ALLOCATE,i);
i=count; /* force exit from loop */
}
}
return(error_number);
}
/t __ */
UBYTE CreateSerialReplyPort(void)
{

UBYTE error_number=NO_ERROR;
if((g_serial_reply_port_p=CreatePort(SERIALNAME,O0))==NULL)
error_number=STARTUP_ERROR;
else {
g_function=DeleteSerialReplyPort;
PushStack(g_resource_stack_p,g_function);

}

return(error_number) ;

void DeleteSerialReplyPort(void)

{
DeletePort(g_serial_reply_port_p);

UBYTE CreateSerialRequestBlock()

{

UBYTE error_number=NO_ERROR;
g_serial_request_p=(struct IOExtSer *)

CreateExtIO(g_serial_reply_port_p,sizeof(struct
IOExtSer));

if (g_serial_request_p==NULL) error_number=STARTUP_ERROR;
else {

g_serial_request_p->I0Ser.io_Data=(APTR)&g_Midi_mes
sage[S];

g_function=DeleteSerialRequestBlock;

Music, Midi, and the MPX File Connections
e T e g e A s GO B i P T S e

PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void DeleteSerialRequestBlock()

{
DeleteExtIO((struct IORequest *)g_serial_request_p);

}

/* __ ﬁ/
UBYTE OpenSerialDevice()

{

UBYTE error_number=NO_ERROR;
g_serial_request_p->io_SerFlags=SERF_SHARED;

if((OpenDevice(SERIALNAME,O,(struct IORequest *)
g_serial_request_p,0))!=NULL)error_number=STARTUP_ERROR;

else
g_function=CloseSerialDevice;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

}

/t __ i/
void CloseSerialDevice()

{

CloseDevice((struct IORequest *)g_serial_request_p);

UBYTE SetHighSpeedSerial()
{
UBYTE error_number=NO_ERROR;

g_serial_request_p->io_SerFlags=SERF_SHARED|SERF_XDIS-
ABLED| SERF_RAD_BOOGIE;

g_serial_request_p->io_RBuflLen=BUFFER_SIZE;
g_serial_request_p->io_Baud=Midi;
g_serial_request_p->io_ReadlLen=8;
g_serial_request_p->io_Writelen=8;

g_serial_request_p->io_StopBits=1;

Mastering Amiga Programming Secrets
1

g_serial_request_p->I0Ser.io_Command=SDCMD_SETPARAMS;

if((DoIO((struct IORequest *)g_serial_request_p))!=NULL)
error_number=STARTUP_ERROR;

else {
g_serial_request_p->I0Ser.io_Command=CMD_WRITE;
}

return(error_number) ;

UBYTE CreateTimerReplyPort()
{
UBYTE error_number=NO_ERROR;

if((g_timer_reply_port_p=CreatePort(TIMERNAME,O))==NULL)
error_number=STARTUP_ERROR;

else ({
g_function=DeleteTimerReplyPort;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void DeleteTimerReplyPort()

{
DeletePort(g_timer_reply_port_p);

UBYTE CreateTimerRequestBlock()
{
UBYTE error_number=NO_ERROR;

g_timer_request_p=(struct timerequest *)
CreateExtIO(g_timer_reply_port_p,sizeof(struct
timerequest));

if (g_timer_request_p==NULL) error_number=STARTUP_ERROR;
else {
g_function=DeleteTimerRequestBlock;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

Music, Midi, and the MPX File Connections
[FIRBAL AR5 S AAE AR A SANAASAS RS R RIS PRI AR AR S AT MR N T n]

void DeleteTimerRequestBlock()

{
DeleteExtIO((struct IORequest *)g_timer_request_p);

UBYTE OpenTimer()
{
UBYTE error_number=NO_ERROR;

if((OpenDevice(TIMERNAME,UNIT_MICROHZ, (struct IORequest
*)g_timer_request_p,0))!=NULL)

error_number=STARTUP_ERROR;
else {
g_timer_request_p->tr_node.io_Command=TR_ADDREQUEST;
g_function=CloseTimer;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void CloseTimer ()

{

CloseDevice((struct IORequest *)g_timer_request_p);

void __regargs TransmitMessage(ULONG size)
{

BYTE io_error;
g_serial_request_p->I0Ser.io_Length=size;

if(io_error=DoIO((struct IORequest *)g_serial_request_p))
printf(“%s %x\n",SERIAL_IO_ERROR,io_error);

}
/t __ */
void __regargs SetTimer (ULONG seconds, ULONG microseconds)
{

BYTE io_error;
g_timer_request_p->tr_time.tv_secs=seconds;

Mastering Amiga Programming Secrets
R o G 5L AN S A RTINS S ST s N TR S o Wi s |

g_timer_request_p->tr_time.tv_micro=microseconds;

if(io_error=DoIO0((struct IORequest *)g_timer_request_p))
printf("%s %x\n",TIMER_IO_ERROR,io_error);

UBYTE _ regargs PlayFile(TEXT *source_name_p)
{

BYTE io_error;

FILE *source_p;

UBYTE error_number=NO_ERROR;

ULONG delay, file_id;

g_absolute_time=0;
g_task_priority=SetTaskPri(FindTask(0),BUMPED_PRIORITY);

if(source_p=fopen(source_name_p,"rb"))
{
file_id=Read4BytesFromChunk(source_p);
if(file_id==ID_MPX1)
{

Read4BytesFromChunk(source_p); /* read over blank
space */

while(fread(g_Midi_message,8,1,source_p))

{

delay=*((ULONG *)g_Midi_message) -
g_absolute_time;

g_absolute_time=*((ULONG *)g_Midi_message);
if (delay)
{

g_timer_request_p-
>tr_time.tv_secs=delay/1000000;

g_timer_request_p-
>tr_time.tv_micro=delay%1000000;

if(io_error=DoI0((struct IORequest
*)g_timer_request_p))

printf(*%s %x\n*,TIMER_IO_ERROR,io_error);
}
TransmitMessage((UBYTE)g_Midi_message[4]);
}
}

else error_number=BAD_FILE;

Music, Midi, and the MPX File Connections
—

fclose(source_p);
}
else error_number=NO_SOURCE;
SetTaskPri(FindTask(0),g_task_priority);
return(error_number) ;

ULONG __regargs Read4BytesFromChunk(FILE *source_p)
{

ULONG value; UBYTE i;

value=(ULONG)fgetc(source_p);

for(i=0;i<3;i++) value=(value<<8)+fgetc(source_p);
return(value);

165

Mastering Amiga Programming Secrets
e e S S e T S e e e g

11:

The
Workbench
MidiPlayer
Program

Midi sequencer packages are
designed primarily for the
creation and editing of Midi
sequences and whilst they offer
playback facilities as part and
parcel of this process they use
their own (proprietary) data
formats internally and are
therefore not usually geared up
for direct playback of Midi files.
This lack of direct Midi file
playing support can be a pain.
Suppose for example you have a
library of sequences and songs
which, for reasons of portability,
you keep in Midi file form. To
listen to any of the data you'd
have to load a sequencer and
then import the sequence or song
before you could play it. When
you've got hundreds of songs or
sequences these import
operations can take a lot of time.
Alternatively, ask any musician
who uses a Midi sequencer on live
gigs and they'll also confirm that
sequencers in general are not
geared for ease-of-use as
playback devices. They have too
many controls and are nowadays
large memory hungry programs
(memory that with a smaller
program could be used for
storing Ram-based, and therefore
rapidly accessed, sequences).
What's needed in these, and many
other, playback only situations is
some sort of small utility that can
handle Midi files directly. I was
never able to find one and so, to
cut a long story short, | wrote my
own called the MidiPlayer. At the
time of writing two versions of
the program are available, a
Workbench version and a Shell
command version. Before we do
anything else then here are some

167

Mastering Amiga Programming Secrets
it e e e S S i e]

brief details of the utilities that you’'ll find on the disk
accompanying the book.

MidiPlayer 1.30 is the Workbench 2.04+ runable form of a utility for
playing Type 0 and Type 1 Midi files. It can also examine and
display general details concerning the contents of Midi files and in
this case any type of Midi file, including Type 2, can be loaded for
examination. How do you use it? Well you'll find the full docs file
on disk but basically you just connect your Midi gear to an Amiga
via a Midi interface and double click on the MidiPlayer icon. Use the
Project Menu’s Select File option to open the file requester and
choose a Midi file.

When you click on OK the file will be loaded and analysed after
which you will be able to use the Display menu to examine a
number of file characteristics. In particular you’ll be able to see if
the file contains any Sysex or sequencer specific meta events, and
be able to see the general Midi message events present and the
channels being used. This should help make setting up easier when
attempting to play files created by other users.The Play File menu is
used for playing, or cancelling, the selected file. All Notes Off
messages are sent as soon as a play operation is cancelled so most
equipment should therefore turn off any hanging notes very
quickly. As a precaution real Note Off messages then also get sent
for every note on every channel. This is because some Midi units
refuse to recognise All Notes Off commands. The Utility menu
provides a similar Kill Notes option that can be used at any time.

The AmigaDOS Style MidiPlayer Command

This, as the name suggests, is a version of the MidiPlayer that can
be used to play Midi files from a Shell window or an AmigaDOS or
ARexx script. The command itself is used like this:

MidiPlayer <filename>

To play a file called myfile.mid present on a disk in drive df0: for
instance you would type the command:

MidiPlayer dfO:mysong.mid

As usual if you want to suppress the program’s sign-on text etc, you
just redirect its output to NIL:

MidiPlayer >NIL: <filename>

I ought to at this stage mention that | am not going to provide an
in-depth line-by-line analysis of how | designed and coded these
Midi file playing programs - this would take a book in itself. What I
do want to do however is cover the important areas and detail with
a number of issues that illustrate important general coding
points.To start with it should be pretty obvious that the key to
writing any file processing utility is to understand, in detail, the
relevant file format. This means of course that it is necessary for

The Workbench MidiPlayer Program

you also to know a little about Midi files in order to appreciate the
ideas that are about to be discussed.

Overview Of The Standard Midi File Structure

At the highest level Midi files consist of blocks of data called
chunks. Each chunk consists of a 4 byte identifier followed by a 32
bit number which provides the byte-length of the data held in the
chunk. At the time of writing only two types of chunks are defined:
Header chunks which have a MThd identifier, and track chunks
which have a MTrk identifier. The idea of files consisting of
identifiable chunks which may be used or skipped over is of course
similar to that used by Electronic Art’'s IFF format. There are
however two important differences: firstly, the Midi file
arrangement doesn’t support the idea of nested chunks. Secondly,
Midi file chunks are not padded to an even number of bytes like [FF
files.

Midi file chunks can be arranged in three ways and this, as
indicated in the previous chapter, leads to three types of files. Type
0 files contain a header chunk followed by a single track chunk -
this is the most portable of all Midi file arrangements and is used
for storing a sequence or song as a single stream of events. Type 1
files have a different use - they allow multiple simultaneous track
sequences to be stored. Type 1 files contain a header chunk
followed by a number of separate track chunks intended to
represent tracks to be played simultaneously.

Format 2 files are different again because they’'ve been developed
to allow sets of independent sequences to be stored. A sequencer
might save the individual sequences (intro, verse, bridge etc) which
make up a complete song as a single format 2 type file. For a Midi
file player program the most convenient format is the type 0
arrangement but since most companies that produce commercial
Midi file compositions tend to provide type 1 format files, a player
program ideally needs to be able to read and play these as well as
type O format files.

MThd header chunks are always the first chunk in a MIDI file and,
like all Midi file chunks, they start with the identifier followed by a
32 bit chunk size value. Header chunks currently have six bytes of
data: the first word gives the file format (0, 1, or 2), the second tells
you how many track chunks are present in the file, and the last
contains timing/division information. The chunk contents therefore
take this form:

4 Bytes MThd identifier

4 Bytes Size in bytes of following data (currently 6)

2 Bytes Midi file type (0, 1 or 2)

2 Bytes Number of Track Chunks (will be 1 for file type 0)

170

Mastering Amiga Programming Secrets
T T O S T e O e i s Sl S Vo]

2 Bytes Division information

The division field's contents and format may vary but if bit 15, ie
the most significant bit, is zero then bits 14-0 give a 15 bit number
which specifies how many delta-time ticks make up a crotchet and
this information is used to adjust the overall event playback speed.

Track chunks start with a 4 byte identifier MTrk and a 32 bit length
field which shows how many bytes the chunk contains. Following
that come the data events themselves - these all start with a field
that specifies the amount of time which should pass before the
specified event occurs (this is the so called delta time). Track chunk
events can be one of three types: Midi Events (which are defined as
being any Midi channel message), Sysex events (which in a Midi file
can be represented in two different ways), and a collection of non-
Midi events known as Meta Events.

Midi events are obviously going to be of interest to the player
program and I'll deal with the issues related to these events later.
I'm not going to deal with Sysex events in any great detail because
most musicians do not include them in their Midi files. However,
because these events have to be properly skipped over we do need
to know how to both identify them and measure their size. Here are
the general Sysex event formats:

Sysex event 1: <delta-time> <FO> <byte-count> <sysex-data-bytes>
Sysex event 2: <delta-time> <F7> <byte-count> <sysex -data-bytes>
Only two Meta events will directly concern us although again
general format details are needed in order to properly skip over any

unused events as they are encountered. Meta events take this
general format:

Meta Event <delta time> <FF hex> <meta-event type> <length> <data bytes>

In other words all of them start with an FF hex Meta event identifier,
followed by a type field, a byte count, and the data itself. The type
field is a 1 byte value between 0 and 127 and the length field is
stored in the same variable length format as is used for delta-time
values. The two Meta events of interest are those that allow the end
of a track, or a change in tempo, to be recognised (See table 11.1). A
whole collection of other Meta events have been defined and many
are used for embedding text material (eg sequence or track names,
lyrics and Copyright notices).

The Workbench MidiPlayer Program
[oem Pa e ot —is fe iomsamai s ols LS on T

Description Type (Hex) Length Details

End Of Track 2F 0 This event must be used so that
an exact ending point can be
specified for a track. It's use
is non-optional!

Set Tempo 51 3 A 24 bit number which
Tepresents microseconds per
quarter note.These events
should ideally only
occur at positions where real
Midi clocks could be located.

Table 11.1. Two example meta events

Delta Times

These time fields are an integral part of the syntax of all Midi file events and,
like a number of other Midi file items, their values are stored in a variable
length format containing 7 real bits per byte. The most significant bit (bit 7)
is used to indicate either the continuation, or the end, of the number:

1st Byte 2nd Byte n'th Byte
1o xox 1o x00x 000 x000¢

shows that this is the last byte of
the number

Shows that more bytes are to follow

You may be wondering why Midi files do not use say a simple fixed 4 byte
event time field. The reasonis to do with efficiency because with the
variable length approach inter-event times which are less than 128 (the
majority of the time values) can be stored using just a single byte. The
number 126 for example can be stored simply as binary 0111 1110. Once
we get above 127 however, ie 0111 1111, more bytes will be needed to
store the number.

Table 11.2. Time fields.

So that then is the basis of the Midi file standard. It's worth
mentioning that something called running status, the use of implied
status bytes is allowed in Midi file data much as it is allowed in real
time Midi data streams. It’s a trick used for improving the efficiency
of the Midi system and is based on the pretty obvious fact that
pieces of music will invariably contain many sections that consist
of just note on and note off messages. Because of this the Midi
standard has allowed notes to be turned off using note on messages
with zero velocity bytes. These sections can therefore be
completely transmitted using just note on status bytes. A normal

171

|

Mastering Amiga Programming Secrets
I R e e e e o e i P L]

note on message as we saw in the last chapter consists of three
bytes but when the running status arrangement is used most of the
note playing events can be sent as just the two data bytes (because
the status byte is unchanged). Running status can therefore reduce
by up to 1/3rd the number of bytes that need to be transmitted!

Although this running status scheme is also allowed to occur within
Midi file data it is only permitted within a stream of Midi events - it
must not be carried across non-channel events. So, if a stream of
running status Midi messages are interrupted by one or more Meta
or Sysex events in a Midi file then a new status byte must be
present in the first of any Midi messages which follow.

A Matter Of Design

The initial program development stages, as might be expected,
revolved around the use of a collection of techniques whose aim
was to map out in detail the overall structure of the program. [used
Warnier diagramming techniques for the initial program design but
there are plenty of other, equally useful, techniques available that
could have been used. In general the two most important points to
make are that firstly you should use some kind of systematic
design approach, and secondly that you should feel comfortable
with the techniques you adopt!

Having studied the Midi file standard in detail its logical structure
was mapped out to give me a clear picture of the formats of the
allowable data items. There is always a very strong connection
between the file structure and final program structure in these type
of file parsing programs and in fact the descriptions of many of the
player program routines were created directly from my Midi file
structure diagrams. [found it convenient to split the development
into two parts producing first a (high-level) chunk reader whose job
was to identify individual Midi file track chunks. Don’t get fooled
into thinking that these early design stages are just a matter of
sketching a program structure and getting stuck into the coding -
it's more an iterative cycle that involves you thinking about what
you're doing, perhaps changing some ideas in light of further
thought, modifying the design and so on. For example, as the
development proceeded, one question that arose with the high-level
chunk reader was how to check that any supplied filename actually
constituted a Midi file. In this instance the standard gave the
necessary clues - the program must read the header chunk and see
if the MThd identifier is present because only if a valid header
chunk is found must the program attempt to read the header items
described in the standard. Other thoughts involved the
incorporation of a dummy destination file for receiving output data
- although not needed for the player program itself | knew that this
file output hook would prove valuable in a number of related Midi
file applications. With my planning approaches all of this type of

The Workbench MidiPlayer Program
—

detail gets eventually embedded into the program design diagrams.
As an example Figure 11.1 shows a Warnier sketch of the chunk
reader part of the player program. Notice that I've allowed for the
fact that, at some later stage in the development of the Midi
standard, some new (and therefore unrecognised) fields might be
added to the header. What does the final code look like in relation
to the diagram forms? Listing 11.1 shows a code sketch that was
developed from the VALID FILE area of the Figure 11.1 framework
during the early development stages:

173

Mastering Amiga Programming Secrets
o e e S et i b i

COLLECT SOURCE FILENAME
(1 time)
COLLECT DEST FILENAME
(1 time)
ATTEMPT TO OPEN SOURCE
(1 time)
SOURCE OPEN{ source file cannot be opened
(0,1 ime)
/RFJKD HEADER CHUNK IDENTIFIER
(1 time)
VAL FILE specified source is not a Midifile
(0,1 time)
READ CHUNKSIZE
@ (1 time)
READ TYPE
(1 time)
READ TRACKCOUNT
< (1 time)
READ DIVISION
(1 time)
DISCARD (CHUNKSIZE-6) UNRECOGNIZED BYTES
(1 time)
< ATTEMPT TO OPEN DEST
SOURCE FILE (1 ime)
(0,1 time)
VALID FILE < OPEN DEST ¢ destination file cannot be opened
(0.1 time) (0,1 time)
(
READ CHUNK IDENTIFIER
@ (1 ime)
OPEN DESI’< EXAMINE < TRACK CHUNK) Discard
(0,1 time) CHUNK (0,1 time) Chunk
(1,n times) @
TRACK CHUNK | Analyse
(0,1 time) Chunk
\ \ N \ \

Figure 11.1. Part of the Warnier description of the high-level chunk reader.

The Workbench MidiPlayer Program

/*Listing 11.1: Part of some preliminary chunk reader code
for the player program*/

UBYTE OpenSourceOK(FILE *source_p, TEXT *dest_name_p)
{
variable declarations
identifier=Read4BytesFromChunk(source_p);
if(identifier!=ID_HEADER) error_number=BAD_HEADER;
else {
chunksize=Read4BytesFromChunk(source_p);
type=fgetc(source_p); type=(type<<8)+fgetc(source_p);

trackcount=fgetc(source_p); trackcount=(track
count<<8)+fgetc(source_p);

g_division=fgetc(source_p); g _division=(g_divi
sion<<8)+fgetc(source_p);

g_microsecs=g_tempo/g_division;
bytes_to_discard=chunksize-3*sizeof (UWORD) ;
error_number=DiscardBytes(bytes_to_discard,source_p);
if(error_number==NO_ERROR)

{

if (!(dest_p=fopen(dest_name_p,"wb")))
error_number=NO_DEST;

else {
for (i=0j;i<trackcount;i++)
{

error_number=ExamineChunk (source_p,
dest_p, dest_name_p);

if(error_number!=NO_ERROR) i=track
count; /* force exit */

} /* end of loop processing */
fclose(dest_p);

} /* end of successful
fopen(dest_name_p, "wb") processing */

} /* end of if(error_number==NO_ERROR) processing*/
} /* end of (identifier==ID_HEADER) processing */
fclose(source_p);
return(error_number) ;

}

175

Mastering Amiga Programming Secrets

_

Chunk Analysis

The high-level reader just described will happily skip through a
Midi file on a chunk by chunk basis. The next stage involved the
creation of a (low-level) chunk analyser whose job was to perform
the detailed track chunk examination. Again a lot of preliminary
planning was carried out and the resulting design diagrams used to
produce the final code. The chunk analyser routine has to be
involved with the detailed structure of possible events present in a
Midi file and we know from the Midi file standard that every event
has an associated delta time value and that events are either Sysex,
Meta or Midi events. The overall formats of Sysex and Meta events
are reasonably simple and have already been discussed. Midi
events, the disk file equivalent of a Midi message, are a little more
complicated because there are seven separate classes.

A channel MIDI message consists of a status byte (bit 7 set high)
followed by either one or two trailing data bytes whose values can
only be between 0 and Ox7F. The status byte itself need not be sent
if the previous message had the same status byte (this is called
running status and it is used to avoid unnecessary status byte
duplication). The status bytes have a MIDI channel number (shown
as n) embedded in the lower four bytes and this 0x0-OxF value
corresponds to MIDI channels 1-16. Channel message types and
sizes are shown below:

NOTE_OFF 0x8n NOTE_OFF_SIZE 2
NOTE_ON 0x9n NOTE_ON_SIZE 2
POLYPHONIC_AT 0xAn POLYPHONIC_AT_SIZE 2
CONTROL_CHANGE 0xBn CONTROL_CHANGE_SIZE 2
PROGRAM_CHANGE 0xcn PROGRAM_CHANGE_SIZE 1
CHANNEL_PRESSURE 0xDn CHANNEL_PRESSURE_SIZE 1
PITCHBEND OXEn PITCHBEND_SIZE 2

The bottom line here for all file events is that, having read the delta
time value and executed an appropriate delay, we must identify the
event type. In the corresponding code these Sysex and Meta event
classifications are handled by a switch statement and all other
bytes, which should be either Midi status bytes or Midi data bytes
are dealt with by a separate MidiHandler() routine that checks/sets
any status changes using a switch statement to identify the various
message categories. Listing 11.2 shows a skeleton version of the
routine which handles the event identification.

Midi messages vary in size and in order to transmit the right
number of bytes it's necessary to distinguish between the various
classes. This again is easily handled in C by using a switch
statement and listing 11.3 should give the general idea.
Transmission of each message is achieved by the serial device

The Workbench MidiPlayer Program
e e e P e P e o T T e P PR
oriented TransmitMessage()function shown in listing 11.4.

/*Listing 11.2: Skeleton form of the program section that
identifies event classes.*/

UBYTE AnalyseChunk(FILE *source_p, FILE *dest_p)

{
do {
delta_time=ReadVarLen(source_p);
if(delta_time)
{
real_delay=delta_time*g_microsecs;
g_timer_request_p->tr_time.tv_secs=
real_delay/1000000;
g_timer_request_p->tr_time.tv_micro=
real_delay%1000000;
DoIO((struct IORequest *)g_timer_request_p);
}
current_byte=fgetc(source_p); /* read first byte of this
event */

switch(current_byte)
{
case SYSEX_EVENT1: handle this type of event
case SYSEX_EVENT2: ditto
case META_EVENT: ditto
default:
pass item to MidiHandler()
break;
}
}while(!(exit_flag|g_break_flag));
return(error_number);

}

/*Listing 11.3: The switch section code that built the
Midi messages*/

switch(current_status)

{

case NOTE_OFF: g_midi_message[2]=fgetc(source_p);
TransmitMessage(NOTE_OFF_SIZE);
break;

178

Mastering Amiga Programming Secrets
[T N N N Ve T SV

case NOTE_ON: g_midi_message[2]=fgetc(source_p);
TransmitMessage(NOTE_ON_SIZE);
break;

case POLYPHONIC_AT: g_midi_message[2]=fgetc(source_p);
TransmitMessage(POLYPHONIC_AT_SIZE);
break;

case CONTROL_CHANGE: g_midi_message[2]=fgetc(source_p);
TransmitMessage(
CONTROL_CHANGE_SIZE) ;
break;

case PROGRAM_CHANGE: TransmitMessage(
PROGRAM_CHANGE_SIZE) ;
break;

case CHANNEL_PRESSURE: TransmitMessage(
CHANNEL_PRESSURE_SIZE);

break;
case PITCHBEND: g_midi_message[2]=fgetc(source_p);
TransmitMessage(PITCHBEND_SIZE);
break;
default:current_status=BAD_CHUNK_DATA;break;
}
Listing 11.4: Serial request code for sending a Midi
Message*/

void TransmitMessage(ULONG size)

{
g_serial_request_p->I0Ser.io_Data=(APTR)g_midi_message;
g_serial_request_p->I0Ser.io_Length=size;
g_serial_request_p->I0Ser.io_Command=CMD_WRITE;
DoIO((struct IORequest *)g_serial_request_p);

}

Listing 11.5: A generalised routine used to skip over
unwanted file events*/

UBYTE DiscardBytes(ULONG count, FILE *source_p)
{

UBYTE error_number=NO_ERROR;

while(count-)

{

if (fgetc(source_p)==EOF) {error_number=BAD_CHUNK_DATA;
count=0;} /* force exit */

The Workbench MidiPlayer Program
[O R ST S T S S

}

return(error_number);

}

The first version of the MidiPlayer | produced was Shell based and
could play only type O files. It used my stack based resource
allocation methods for timer and serial device control in much the
same way as the MidiPlayX utility dealt with in the last chapter. The
only difference was that before a Midi file event could be played it
had to be identified, and its delta time value had to be unpacked.
Unused events, like Meta and Sysex events, were discarded using
the generalised routine shown in listing 11.5. There's no doubt that
the key to producing this piece of software was a complete and
thorough understanding of the Midi file standard. In fact for many
months [deliberately lived and breathed the Midi file standard in
order to develop a very clear mental picture of their contents. | also
spent a lot of time with the program design stages and made sure
that my code corresponded very closely to the design diagrams |
had produced.

There were incidentally very clear reasons for creating a Shell based
version initially. As file reading programs go the Midi file parsing
routines used were relatively complex and because of this they
needed to be tested in the simplest environment possible. The Shell
version which coupled the Midi file parsing routines to the
minimum amount of resource allocation/deallocation code needed
to produce a runable program in effect provided a testbed that
allowed me to confirm that the underlying file parsing design ideas
were sound. | tested this program for about a year just to ensure
that there were no major problems.

Having got to this stage, producing a version of the program that
uses windows, gadgets and menus is relatively easy. Intuition
provides all the building blocks needed and nowadays the Release 2
GadTools facilities and things like the ASL file requester library,
which [use in MidiPlayer version 1.30, have made things even
easier. | began the Workbench conversion phase by sketching out
some possible display layouts and thinking about whether there
were any additional goodies that I could bolt onto the code. What
sort of extras did I have in mind? For my own interest | was keen to
identify files that contain hidden sequencer specific Meta event
messages. Why? It's because the International Midi Association, the
body that nowadays controls the Midi file standard, has for many
years suggested that software houses make the contents of such
data packets public knowledge. Most software houses do not do
this as a matter of course (simply because most users wouldn’t be
interested anyway). | am, and it seemed to me that if | knew which
files contained such messages I'd be in a better position to
‘encourage’ the appropriate software houses to release some extra

Mastering Amiga Programming Secrets

—

info. There were also some more practical considerations to bear in
mind - like knowing what Midi channels are being used in a given
file. When you are playing a Midi file that you didn’t create yourself
it is often necessary to reset the channel assignments of your Midi
gear in order to hear anything. For similar reasons it is of interest
to know whether a Midi file contains program change or Sysex
messages.

Now in theory this type of information could be obtained and
displayed during the time the file was actually playing. Time-
keeping would however clearly suffer as more detailed analysis
functions were added to the program. Since [expect that such
functions would continue to grow (and get more complex) in later
versions of the program I've chosen right from the start to handle
the display-oriented file analysis functions separately Event
detection code is extremely simple — I just use a set of array-based
indicator variables and as events of importance are detected the
appropriate event flags are set to TRUE like this:

case NOTE_ON: g_channel_detected[f(NOTE_ON)]
[current_channel]=TRUE;

break;

By the time the Midi file has been read a flag set is available that
tells us exactly what events have been encounted and this data is
then used to update the display seen by the user. Before reading a
new file all event indicators do of course need to be cleared (set to
0). This again is very straightforward and just involves the use of a
few ‘for’ loops (see listing 11.6).

/*Listing 11.6: Before a new Midi file is examined the

arrays which hold the detected/not-detected flags for the
various event classes must be re-initialised.*/

void ClearDetectedFlags(void)

{

UBYTE i,j;

for (i=0;i<C_TYPE_COUNT;i++)
{
for (j=0;j<16;j++) g_channel_detected[i][j]=FALSE
}

for (i=0;i<S_TYPE_COUNT;i++) g_sysex_detected[i]=FALSE;
for (i=0;i<M_TYPE_COUNT;i++) g_meta_detected[i]=FALSE;
}

The Workbench MidiPlayer Program
e v R AT e e e o o v T e T e e

Adopting a Modular Approach

There are a number of well-defined areas which the Intuition
version of the MidiPlayer program needed to tackle including of
course the handling of the Intuition based display seen by the user.
There was also the Midi file parsing operations discussed earlier
and the resource allocation/deallocation routines that had to be
extended to cope with the new Intuition-oriented program
requirements like opening windows and setting up menus. [coded
each of these areas as separate program modules making as much
use of existing pre-written code as possible.

I'm not going to discuss the structure of my resource handling code
because this has been dealt with in earlier chapters. The function
pointer set shown in listing 11.7 however provides a list of the
operations that have to be carried out.

/*Listing 11.7: This list of function pointers controls
the MidiPlayer startup operations.*/

UBYTE (*display_list[])() = {
OpenInt,
OpenGraphics,
OpenGadtools,
OpenAsl,
LockScreen,
GetVisInfo
CreateWindow,
CreateMenu,
CreateMenulLayout,
InstallMenu,
CreateFileRequest,
CreateSerialReplyPort,
CreateSerialRequestBlock,
OpenSerialDevice,
SetHighSpeedSerial,
CreateTimerReplyPort,
CreateTimerRequestBlock,

penTimer

}s

182

Mastering Amiga Programming Secrets
[et T T S s o i R PR R = A e S st

The Intuition Angle

The Intuition related aspects of the MidiPlayer code may be of
interest and these fall roughly into three areas: the program uses a
window that opens in the Workbench screen and under Release 2
this screen has to be locked during the time a window is set up and
opened. Menus also have to be installed and this must obviously
only be done if the window itself is successfully opened. Area one
then concerns the Intuition related resource allocation and
deallocation tasks and these of course can be handled in exactly the
same way as any other system resource.

In the latest version | have incidentally opted for using the
GadTools Library rather than the older style Intuition approaches
and this is primarily for simplicity - things like menus are far easier
to set up using the GadTools arangements. You'll be able to see this
from the menu definition shown in listing 11.8. The GadTools
library is able to convert this description directly into the menu
that appears on the screen!

There are a number of well-defined areas which the Intuition
version of the MidiPlayer program must tackle including of course
the handling of the Intuition based display seen by the user. There
are the Midi file parsing operations (which were discussed earlier)
and the resource allocation/deallocation routines that must now be
extended to cope with the new Intuition-oriented program
requirements like opening windows and setting up menus. Ive
coded each of these areas as separate program modules making as
much use of existing pre-written code as possible.

The second area of Intuition related code concerns the handling of
gadget and menu events passed back to the program from Intuition.
This type of code may look frightening when you first see it, but
the basic principles are very easy to understand. The program
executes a Wait() or WaitPort() which puts it to sleep (ie puts it on
hold so that it stops requiring processor time) until the user hits a
gadget or makes a menu selection. At this time it is Intuition that's
doing all the event recognition work and having identified a
particular user action it sends the program an IntuiMessage. The
first thing that your program knows about all this is when Exec
wakes it up and tells it that the signal that it is waiting on has been
satisfied. The program then knows that a message has arrived and
so it collects the message, looks in the message’s Class field to
identify its type, and returns the message using a reply function
(which lets the sender know that the message has been dealt with
and can be deallocated or re-used). Having done all that it must
then perform whatever action is suitable for the particular message
in question. My MidiPlayer event handling uses a preliminary
routine to identify the general type (gadget or menu) and then, for
menu messages, | send a copy of the Code field to a dedicated

The Workbench MidiPlayer Program
e e R e e T T T T Y e e T,

menu message routine.

When GadTools entities are being used it is necessary to use the
GT_GetIMessage() function to collect the IntuiMessages generated
by menu/gadget use. The overall event handling schemes are
however structurally identical to those used with say Workbench
1.3, and listings 11.9 and 11.10 show the type of event collection
loops that were implemented. There was one snag that I hadn't
really thought about until I started coding. [needed to find a way to
allow a user to quit playing a file at any time via a normal menu
selection operation. The difficulty was of course that, once a Midi
file is being played, program control passes away from the main
Intuition event-collection loops. What | needed was a quick way of
seeing whether any IntuiMessages were queued at the Window's
UserPort. The approach | adopted involves a preliminary check to
see whether any messages were present at all followed by some
more conventional message handling code that is only ever
executed if the message port is non-empty (see listing 11.11). The
IsMsgPortEmpty() function shown in listing 11.11 is a system macro
which can be found in the exec/lists.h system header file.

Lastly of course, there are the general display-oriented Intuition
connections to consider: beeping the screen when errors occur,
putting up messages that provide information to the user and so
on. MidiPlayer uses a relatively simple display and text items are
placed on screen using IntuiText structures and the PrintlText()
Intuition function. Listing 11.12 for example shows the definition
of the text array that is used to tell the user that their currently
selected Midi file contains Sysex data:
/*Listing 11.8: Together the NewMenu structure and the

GadTools library have greatly simplifed the creation of
Intuition menu definitions.*/

struct NewMenu menui[] =

{
{NM_TITLE, "PROJECT" 0 ,0,0,0,},
{NM_ITEM, "Select File.. 2t g *s$",0,0,0,},
{NM_ITEM, "Quit to Workbench", “a",0,0,0,},
{NM_TITLE, "PLAYFILE ", 0 ,0,0,0,},
{NM_ITEM, "Play file... 29 “p*,0,0,0,},
{NM_ITEM, "Cancel play... an *c",0,0,0,},
{NM_TITLE, "DISPLAY ", 0 ,0,0,0,},
{NM_ITEM, "Channel Data... ", *0",0,0,0,},
{NM_ITEM, "Sysex Data... "y “F*,0,0,0,},
{NM_ITEM, "Custom Data... iy *M*,0,0,0,},

{NM_TITLE,*UTILITY *, 0 ,0,0,0,},

Mastering Amiga Programming Secrets

{NM_ITEM, "Kill Notes... . “K*,0,0,0,},
{NM_END, NULL, 0, 0,0,0,},
}s

*/Listing 11.9: MidiPlayer’s high-level Intuition event
collection loop.*/

port_mask=(1<<g_window_p->UserPort->mp_SigBit);
do {
Wait (port_mask);

while (message_p=(struct Message *)GT_GetIMsg(
g_win dow_p->UserPort))

{

error_number=IntuitionEvent((struct IntuiMessage*)
message_p);

}
}while(error_number!=PROGRAM_EXIT) ;
return(error_number);

}

/*Listing 11.10: Each Intuition event gets passed to the
appropriate handler.*/

UBYTE IntuitionEvent(struct IntuiMessage *message_p)

{

UBYTE error_number=NO_ERROR;
UWORD code;

ULONG class;class=message_p->Class;
code= message_p->Code;
GT_ReplyIMsg(message_p);
switch (class) {
case IDCMP_CLOSEWINDOW:
error_number=PROGRAM_EXIT;
break;
case IDCMP_MENUPICK:

error_number=MenuEvent (code,
INTUITION_CALL); break;

default: error_number=PROGRAM_EXIT;
break;

}

return(error_number);

The Workbench MidiPlayer Program
[sin st S T Sl P B R S DR B R A e g =t s M

}

/*Listing 11.11: The tricky job of checking to see if user
wants to quit whilst a Midi file is being played is han-
dled by quickly checking to see if any messages are queued
up at the Window’s UserPort message port.*/

if (!(IsMsgPortEmpty(g_window_p->UserPort)))
{
message_p=GT_GetIMsg(g_window_p->UserPort);
code=message_p->Code;
GT_ReplyIMsg(message_p);
if (code!=MENUNULL)

{

WriteBoxText(&intuitext3,XP0S3,LINEPOS3,PANIC_KILL,GREY,BI
G_OFFSET) ;

KillSounds();
ClearBoxText(&intuitext3,BLUE,BIG_OFFSET);

WriteBoxText(&intuitext3,XP0S3,LINEPOS3,FUNCTION COM-
PLETE,GREY,BIG_OFFSET);

Delay(DELAY);
ClearBoxText(&intuitext3,BLUE,BIG_OFFSET) ;
exit_flag=TRUE;
}

}

/*Listing 11.12: MidiPlayer uses simple static text arrays
like this for its on-screen messages!*/

TEXT *g_sysex_text[]={
o Ahkhhhhhkhhhh sYsTEM EXCLUSIVE khhhkhhhhh "

" This file contains Sysex datal "

At the present time MidiPlayer reads e

but does NOT transmit this information =

L L2222 R 2R RRRRRRRRRRRRRRRRRRRRRRSRE SRS "

}s

185

Mastering Amiga Programming Secrets
e e G T o O S S G Y 7 e e gV B R A

/*Listing 11.13: This ‘'makefile' automatically controls
all MidiPlayer compiling and linking operations.*/

e s
#MidiPlayer smake file
000000000 A0EE000000000000000000000000006000000000000000
MidiPlayer: allocator.o amiga.o midiplayer.o images.o
sc:c/slink FROM LIB:c.o "allocator.o"
“amiga.o" \
“midiplayer.o" "“stack_adt.o" "images.o" \
TO MidiPlayer LIB LIB:sc.lib+LIB:amiga.lib
allocator.o: allocator.c display_position.h general.h
prototypes.h
sc:c/sc allocator.c
amiga.o: amiga.c amiga.h display_position.h

general.h prototypes.h
c:c/sc amiga.c

midiplayer.o: midiplayer.c display_position.h general.h
prototypes.h
sc:c/sc midiplayer.c

images.o: images.c
sc:c/sc images.c

The Amiga, as many of you will
doubtless know, uses a pixel
colouring scheme known as
colour indirection. Instead of the
bitplane data in a given position
representing a particular colour it
represents a colour register
number and itis the value in each
colour register which determines
the on-screen colours.

Let's consider, for example, a
screen with two bitplanes. If we
fill all the bytes of the bitplanes
with zeros then the two bits (one
bit from the corresponding
display positions of each
bitplane) which define the colour
register numbers of the
corresponding screen locations
will be 00 binary, ie zero, in all
cases. This means that the
display would be filled with the
single colour defined by colour
register 0. If this register was set
to the RGB triplet value 0x000F
then the colours of the pixels
would be blue. If register 0 held
value OxOFFF the colours of each
pixel would be white. If, however,
we had filled the bytes of both
bitplanes with OxFF values (so
that all bits in all bitplanes were
set to ‘I's) then each position on
the screen would be using the
colour register corresponding to
11 binary, ie register 3.

Irrespective of the actual contents
of a given colour register one
thing should now be obvious. To
change the on-screen colour of
all pixels associated with a
particular colour register all we
have to do is change the value in
that register. If, for arguments
sake, you were displaying a two
bitplane image of a red box on a

187

Mastering Amiga Programming Secrets
BT TR o L T MR e LS Sk NS i e e i

blue background where colour register 1 held a red colour 0x0F00
and register 0 was 0x0O0OF (ie blue) then to change the red box to a
green box we'd just need to write 0x0O0FQO (ie green) into colour
register 1. Similarly to change the background colour we would
change the value in colour register 0.

The important thing with the above scenario is that the contents of
the bitplanes themselves do not need to be changed. The benefit of
colour indirection then is that you can re-map the colours of an
image very quickly, and very easily, without having to alter the
image data itself. Colour cycling on the Amiga makes use of this
colour indirection effect and it works by moving around the colour
values held in a set of colour registers so that the associated pixels
take on the colours of each of the colour registers in turn. With a
two bitplane display, colour register 0 to 3 will be in use, so if we
wanted to cycle all of these colours this is what we would do:

copy the contents of register O to a temporary store

copy the contents of register 1 to register O

copy the contents of register 2 to register 1

copy the contents of register 3 to register 2

copy temporary store to register 3
Each time this set of operations were performed the colour values
would move cyclically to the next position and by the time the
operations had been done four times the register values will be

back to their original positions. In general then, if we want to cycle
a set of registers we can use this sort of loop based scheme:

copy the contents of the lower register (1) to a temporary
store

for i =1 to h-1
copy contents of register i to register (i+1)
next i

copy temporary store to register h

And that, as far as the basic idea of colour cycling goes, is all there
is to it although in practice a little more detail has to be considered.

The Intuition Connection

To scroll the colours associated with an Intuition screen you need
to make a copy of the colour register values of the associated
viewport. These values are held in a block of memory called a
colour table which is arranged as a set of words where the lowest
12 bits of each word corresponds to the so called RGB triplet values
(4 bitred, 4 bit green and 4 bit blue). To get the address of this RGB
colour table array it is necessary to look at the screen’s ColorMap
structure. The ColorMap definition has incidentally undergone a
number of changes since it was first defined but the two fields that

Colour Cycling
[=owSareee— o~y ok

we are interested in, namely the address of the colour table entries
and the count of the number of entries in the colour table, are
present in all forms of the ColorMap structure. From C this would
be the sort of code required to isolate the necessary data given the
screen's viewport:

g_count=viewport_p->ColorMap->Count;
/* number of RGB triplets in table */

cm_p=viewport_p->ColorMap->ColorTable;
/* pointer to start of colour table */

We do in fact need to make two copies of the colour map data
values — one set will be used for altering the colours and one set,
which we'll leave unchanged, for reinstating the colours when we've
finished. In the example program I use a loop which reads a triplet
and the increments the colour table pointer so that it points to the
next entry like this:

for (i=0;i<g_count;i++)
{ /* copy colour map details */
g_cm_copy[i]=g_cm[i]=*cm_p++;
}

Once the colour table data is available the cycling process is, as
already mentioned, very easy to accomplish. The following loop
cycles the register between two chosen limits (lower_reg and
upper_reg) and then uses the graphics library LoadRGB4() function
to install the rearranged colours into the display:

temp=g_cm_copy[lower_reg];

for (i=0;i<3;i++)

{

g_cm_copy[i]=g_cm_copy[i+1];

}

g_cm_copy[upper_reg]=temp;
LoadRGB4(viewport_p,g_cm_copy,g_count);

Mastering Amiga Programming Secrets

AL

Function Name: LoadRGB4(

Description: Load RGB colour table into a given viewport's colour
map

Call Format: LoadRGB4(viewport_p,colour_table_p,count);

C Prototype: void LoadRGB4(struct ViewPort * viewport_p, UWORD
* colour_table_p,WORD count);

Registers: LoadRGB4(a0, al, d0:16)
Arguments: viewport_p - pointer to viewport colour_table_

P - pointer to start of RGB colour

table count - number of entries in table
Return value: None
Notes: RGB colour table entries are UWORDs which

correspond to 4 bit red, green and blue components
stored like this:

colour reg 0 0xORGB (background colour)

colourreg 1 0xORGB
colour reg 2 0xORGB.etc.one UWORD per entry

To restore the colours to their original positions we can do one of
two things. Always arrange to cycle the colours enough times to
bring them back to their original positions before terminating the
cycling operations, or reinstate the original colour map from a copy
of the colour table that has been held unchanged. I've adopted the
second solution and use a routine like this to reinstate the original
display colours:

void CycleOff(struct ViewPort *viewport_p)

{
LoadRGB4 (viewport_p, g_cm, g_count);

}

To turn these ideas into a usable routine we need to be able to
choose a set of colour registers, read their contents (from the
colour map), cycle them and load the new arrangement into the
viewport, wait a while, cycle and update the colours again,
continuing until we decide to stop and reinstate the original colour
map contents. As far as executing a time delay is concerned there
are a number of possibilities available: we could use an interrupt
based routine tied to the Amiga’s vertical blanking server chain, or
we could use the dos library Delay() function, or have Intuition
send us intuitick messages, and arrange for a program to cycle its
own registers at the appropriate time. I'm going to adopt what will
at first sight appear a more complicated solution but it's one that
eliminates the need for the program itself to concern itself with the
job of cycling its colour register values. What I'll be doing of course
is creating a separate program which is able to produce colour

Colour Cycling
[is oz s]

cycling effects on another program's screen as and when it is asked
to do so by appropriate messages. Communications-wise this
colour cycling program will be based on similar ideas to chapter
six’s flash program and because the background process will
actually be kicked off, ie started, by some main program that wants
to cycle its screen colours I'll again be talking about the colour
cycling program as a child process.

In short the main program will run the child process and then send
it messages that give it the information needed to produce a
specified cycle effect (the child process will carry out these
necessary colour cycling chores automatically, and quite
independently, from the main program). Before the main program
terminates it will send a message to the child process telling it that
it also should terminate. The benefit of this type of arrangement is
flexibility — a single cycle program can be used by all programs
wishing to create these effects. Another reason why I've adopted
this message based arrangement is that it gives you another chance
to see how easy it is to use the Exec messaging system in your own
programs.

CycleMessages and Their Use

We saw in chapter 6 that Exec messages are based on an extensible
length structure with the Exec defined fields being supplemented
by additional user defined data. For this chapter's example we are
interested in creating a program that can handle the job of cycling
the colours, in particular colour registers associated with a
specified ViewPort. To do this we need to know the address of the
ViewPort, the frequency with which the colours are to be cycled,
and the colour registers concerned. We also need a command field
so that, at the very least, the effect can be turned on and off and
the program told when to quit. This is the message structure |
chose to adopt for the example program:

struct CycleMessage {
struct Message cycle_Msg; /* standard Message details */

struct ViewPort *viewport; /* will provide access to a

ColorMap*/
ULONG frequency; /* colour changes per minute */
UBYTE lower_reg; /* lower register of range */
UBYTE upper_reg /* upper register of range */
UBYTE command; /* command to be executed */

}s
Let's go over how these messages are used. When the main program
sends the child program a message using PutMsg() the message gets

Mastering Amiga Programming Secrets

sends the child program a message using PutMsg() the message gets

linked into a list of messages which are tied to the child program’s
port structure. The important point about this process is that the
message is not copied - it is the memory block associated with the
main program’s message which is linked into the list of messages
present at the child program’s message port. In a sense then when
the main program allocates, initializes and then sends the child
program some message. what the main program is really doing is
giving the child program a licence to use part of its memory
space.Once this licence has been granted the main program should
not interfere with the message until it is safe to do so. How does it
know when its message can be re-used or discarded? Usually the
child process will send the message back to the main program
using Exec’s ReplyMsg() function. This later function links (with a
suitable reply ID marker) the message into the main program’s
message port and, when the main program reads this, it knows that
the message is finished with. The main program is then free to re-
use that memory space as it sees fit. Note that the main program in
the above scenario, does not reply to the message it receives — this
is because the main program was the originator of the message.
Because the message originator usually needs to be told when a
message has been dealt with, both communicating programs need
their own message ports — despite the fact that, as in the above
example, the passage of real information is only going one way. The
net result, as we saw in Chapter 6, is that two programs
communicate using this type of scheme:

Main Program Child Process
1: Allocatesmemory for message

2: Fills in relevant field details

3. Sends Message using PutMsg()

4: Collects message using GetMsg()

5: Extracts data from message

6: Sends back message using
ReplyMsg()

T: Receives reply using GetMsg()
8: Re-uses/deallocates message

Table 12.1. Process communication.

The general program framework being used for the examples in this
book makes use of a Intuition window that already has two
associated message ports — one is used by Intuition and the other
(the window's User Port) is used for handling the IntuiMessage and
GadTool messages received by the program. To communicate with
the Cycle program we'll be opening another message port because

Colour Cycling

these messages will be easier to use if they come in as an isolated
stream of CycleMessages rather than being possibly mixed up with
other classes of message.

Setting Up A Message Port

In order for our main program to communicate with the child
colour cycling process a message port is needed for the ‘I have
finished with the message’ reply messages that come back from the
child. Since Release 2 of the Amiga's O/S there are both amiga.lib
and Exec functions available for creating and deleting message
ports and the pair of routines shown in listing 12.1 are the
allocator/deallocator functions for a reply port based on the Exec
style routines:

/t __ */

/*Listing 12.1: Functions to allocate and deallocate a
reply port in the main program.*/

UBYTE CreateReplyPort(void)
{
UBYTE error_number=NO_ERROR;
if((g_reply_port_p=CreateMsgPort())==NULL)
error_number=STARTUP_ERROR;
else {
g_function=DeleteReplyPort;
PushStack(g_resource_stack_p,g_function);

}
return(error_number) ;
}
/t __ */
void DeleteReplyPort(void){DeleteMsgPort(g_reply _port_p);
}
/ﬁ __ */

Sending a Message

The routine that provides colour cycling control within the main
program is going to revolve around the use of four commands -
CYCLE_SETUP, CYCLE_ON, CYCLE_OFF and CYCLE_QUIT. Of these the
first is used only by the main program to indicate that the message
needs to be initialised, the remainder are real commands that need
to be passed to the external child process that will be doing the
colour cycling operations.

Listing 12.2 shows a rough plan of the routine that will be used.
Listing 12.3 shows the routine in detail (notice that in this example
a static structure declaration - static struct CycleMessage cycle; -
has been used to create the CycleMessage).

Mastering Amiga Programming Secrets
e e U TR e eV YO RN T P Ve]

SR B G Do DE e O B R B OO G E HE 0 a0 CEaa 6 Gt 600 Arme: */

/*Listing 12.2: Skeleton of a routine for sending child
process a 'cycle' message.*/

UBYTE Cycle(UBYTE command)

{
if (command==CYCLE_SETUP)
{
Set up message structure in readiness for sending
messages
}
else {
Transmit message to child using PutMsg()
Use the WaitPort() function wait for child to confirm
use of message
Use GetMsg() to retrieve reply indicating that
message is ready for re-use
}
}
/t __ t/

/*Listing 12.3: An example routine for sending the child
process a ‘cycle’ message.*/

¥ e e eeaeeeeeeeceeeeeaeae—aaaaa- */
UBYTE Cycle(UBYTE command)
{
UBYTE error_number=NO_ERROR;
static struct CycleMessage cycle;
if (command==CYCLE_SETUP)
{

cycle.cycle_Msg.mn_Length=sizeof(struct
CycleMessage);

cycle.cycle_Msg.mn_ReplyPort=g_reply_port_p;
cycle.viewport=g_viewport_p;
cycle.frequency=CYCLE_FREQUENCY;
cycle.lower_reg=LOWER_REG;
cycle.upper_reg=UPPER_REG;
}

else {
cycle.cycle_Msg.mn_Node.ln_Type=NT_MESSAGE;

Colour Cycling
T T TN

cycle.command=command;
PutMsg(g_msgport_p, (struct Message *)&cycle);

WaitPort(g_reply_port_p); /* wait for cycle program
to confirm use */

GetMsg(g_reply_port_p); /* message now ready for re-

use */
}
return(error_number);
}
/t __ i/

Some Main Program Coding Issues

For a main program to safely talk to a child process using
CycleMessages we need to allow for the fact that since the child
process is a separate entity, ie a runable program in its own right, it
may not actually be found when we attempt to run it. As you
should now expect, the way | tackle this job is to include the
attempted running of the child process in my normal
allocation/deallocation framework. In the CH 12-1 example then
you will see this function pointer control block defined:

UBYTE (*display_list[])() = {

OpenInt,

OpenGraphics,

OpenGadtools,

LockScreen,

GetVisInfo,

CreateWindow,

CreateMenu,

CreateMenulLayout,

InstallMenu,

CreateReplyPort,

RunCycle

}s
Once the library, screen, window, menu and reply port creation jobs
have been successfully carried out the routine shown in listing 12.4

is performed. This tries to run the cycle program using the DOS
SystemTags() function like this:

SystemTags("run CYCLE:cycle >NIL: <NIL:",TAG_DONE);
I've coded this assuming that a logical CYCLE: assignment is in

place that tells the main program where to find the Cycle utility
program. If, for example, the cycle program was to be placed in the

Mastering Amiga Programming Secrets
o A e e AT PO T s P S S G B S O S R s mazr s e

command (c:) directory you would need to use
1> assign CYCLE: c:
to tell the main program where the cycle utility could be found.

How do we tell whether the cycle program really does get found
and started or not? We just look to see whether its message port
can be detected using the Exec FindPort() function like this:

Forbid();

g_msgport_p=FindPort (DESTINATION_PORT_NAME) ;
Permit();

if (!g_msgport_p) error_number=STARTUP_ERROR;
else {

Notice here that Exec Forbid() and Permit() calls have been used to
sandwich the FindPort() call. This is important because it allows us
to lock out other tasks and so prevent any alteration of Exec’s port
list whilst our program is examining it.

Providing the port is found, which we detect by seeing a non-NULL
pointer being returned by the FindPort() function, we set up the
fields of the program’'s CycleMessage structure using a
Cycle(CYCLE_SETUP) call and at this point we know that the child
process is up and running. The corresponding deallocation routine
just performs the call: Cycle(CYCLE_EXIT) thereby transmitting a
message to the cycle program telling it to shut itself down.

/t __ */

/*Listing 12.4: Checking for the child message port is a
safe way for checking the child’s existence.*/

UBYTE RunCycle(void)
{
UBYTE error_number=NO_ERROR;
SystemTags("run CYCLE:cycle >NIL: <NIL:",TAG_DONE);
Forbid();
g_msgport_p=FindPort (DESTINATION_PORT_NAME) ;
Permit();
if (!g_msgport_p) error_number=STARTUP_ERROR;
else {
g_function=KillCycle;
PushStack(g_resource_stack_p,g_function);
Cycle(CYCLE_SETUP);
}

return(error_number) ;

}

Colour Cycling

[0 s g s ai)
/t __ t/
void KillCycle(void)
{
Cycle(CYCLE_EXIT);
}
/t __ i/

The Colour Cycling Program Itself

The child process that performs the colour cycling is an
independent program in its own right. From a logical viewpoint it
works in much the same way as chapter 6’s flash program and again
has to have a message port available. Listing 12.5 shows how this is

set up:
/* ..

/*Listing 12.5: Port creation routines for the child
process*/

UBYTE CreateCommandPort()

{

UBYTE error_number=NO_ERROR;

if((g_command_port_p=CreateMsgPort())==NULL)
error_number=STARTUP_ERROR;

else {
g_function=DeleteCommandPort;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

void DeleteCommandPort(){DeleteMsgPort(g_command_port_p);}

[* e eaaeecameaeeeaeeccaeeeaeccceeeaecaaa-

*/

The port needs to be added to Exec’s public ports list and when the
amiga.lib CreatePort() routine is used this is done automatically.
With the Exec style functions it has to be done by the program itself

using the Exec AddPort() function.

A L I L

/*Listing 12.6: Making the command port of the child
process public.*/

UBYTE MakeCommandPortPublic(void)
{

197

Mastering Amiga Programming Secrets
= i = L= = 28 N B A S B e A K 7 |

UBYTE error_number=NO_ERROR;
g_command_port_p->mp_Node.1ln_Name=COMMAND_PORT_NAME;
AddPort(g_command_port_p);
g_function=RemovePublicCommandPort;
PushStack(g_resource_stack_p,g_function);

return(error_number);

void RemovePublicCommandPort(void)

{

RemPort(g_command_port_p);

}

controlled by a function pointer list and for the cycle program this
looks like this:

UBYTE (*allocator_list[])() = {
OpenGraphics,
CreateTimerReplyPort,
CreateTimerRequestBlock,
OpenTimer,
CreateCommandPort,
MakeCommandPortPublic
}s
The graphics library is needed because the LoadRGB4() is used to
set up the colour register values. The timer entries are used to set
up the Amiga’s timer device, and the last two entries produce the
command port that we've been discussing. Conceptually the
program is straightforward. As soon as the program has completed
its starting up operations it enters a wait loop based on the Exec

WaitPort() function. As soon as a message wakes the program up the
details are extracted like this:

command=((struct CycleMessage *)message_p)->command;

viewport_p=((struct CycleMessage *)message_p)->viewport;
frequency=((struct CycleMessage *)message_p)->frequency;
lower_reg=((struct CycleMessage *)message_p)->lower_reg;
upper_reg=((struct CycleMessage *)message_p)->upper_reg;

and the message is then replied to so that the main program knows
that the command has been received and is being processed.

Colour Cycling
SR e R

Because the CycleMessages hold a frequency value (our choice!) this
needs to be converted into a real time delay for the timer device so
immediately after collecting the message [carry out this frequency
<-> time interval conversion:

secs=60/frequency;
microsecs=(60*1000000/frequency)%1000000;

Having done that a switch statement is used to distinguish between
the various CycleMessage commands. Listing 12.7 shows the
complete code for the colour cycling module:

/* __ ﬁ/

/*Listing 12.7: The child process colour cycling rou-
tine.*/

/* amiga.c - child process code for colour cycling */
#include "general.h”

static UWORD g_cm[32],g_cm_copy[32];

static UBYTE g_count;

UBYTE AmigaProg(void)

{

UBYTE lower_reg, upper_reg, command,
error_number=NO_ERROR;

ULONG secs,microsecs,frequency;struct Message *message_p;
struct ViewPort *viewport_p;
do {
WaitPort(g_command_port_p);
while (message_p=GetMsg(g_command_port_p))
{
command=((struct CycleMessage *)message_p)->command;

viewport_p=((struct CycleMessage *)message_p)->
viewport;

frequency=((struct CycleMessage *)message_p)->
frequency;

lower_reg=((struct CycleMessage *)message_p) -
>lower_reg;

upper_reg=((struct CycleMessage *)message_p)-
>upper_reg;

ReplyMsg(message_p);

secs=60/frequency;
microsecs=(60*1000000/frequency)%1000000;
switch(command)

{

200

Mastering Amiga Programming Secrets
e e s B AR S A S T i s

case CYCLE_ON: CycleOn(viewport_p,lower_reg,
upper_reg, secs, microsecs);
break;

case CYCLE_OFF: CycleOff(viewport_p);
break;
error_number=PROGRAM_EXIT;
break;

default: break;

}

}
}while(error_number !=PROGRAM_EXIT) ;

return(error_number);

void CycleOn(struct ViewPort *viewport_p,UBYTE
lower_reg,UBYTE upper_reg,ULONG secs,ULONG micros)

{
BOOL exit_flag=FALSE;
UWORD temp, *cm_p;COUNT i;
g_count=viewport_p->ColorMap->Count;
cm_p=viewport_p->ColorMap->ColorTable;
for (i=0;i<g_count;i++)
{ /* copy colour map details */
g_cm_copy[i]=g_cm[i]=*cm_p++;
}
while(!exit_flag)
{
if(!IsMsgPortEmpty(g_command_port_p)) exit_flag=TRUE;
else {
/* cycle colours around */
temp=g_cm_copy[lower_reg];
for (i=0;i<3;i++)
{
g_cm_copy[i]=g_cm_copy[i+1];
}
g_cm_copy[upper_reg]=temp;
LoadRGB4 (viewport_p,g_cm_copy,g_count);

SetTimer(secs,micros);

Colour Cycling
I

void CycleOff(struct ViewPort *viewport_p)

{
LoadRGB4 (viewport_p,g_cm,g_count);

/t __ t/
void __regargs SetTimer(ULONG seconds, ULONG microseconds)

{

g_timer_request_p->tr_time.tv_secs=seconds;
g_timer_request_p->tr_time.tv_micro=microseconds;
DoIO((struct IORequest *)g_timer_request_p);

Using the Cycle Utility

The thing to remember about the approach that we've adopted in
this chapter is that the Cycle program, can now be regarded as a
general utility. Any program that needs to cycle some or all of the
colours of a screen can just set up a reply port, run the cycle
program and then control the required effects by sending the
program the appropriate CycleMessages. For the example
associated with this chapter I've just used the routine to cycle the
Workbench screen colours but it’s not hard to envisage more
interesting uses of this approach. Other enhancements, such as
being able to alter the direction of the colour cycling, cycling whilst
fading the intensity of the colours etc, could all be implemented by
adding extra routines to the child cycle program and defining
additional CycleMessage commands. The communications scheme
would of course be exactly the same so such additions, once the
message handling code is in place, would be likely to involve
relatively little work.

Mastering Amiga Programming Secrets
o P T N T N N = P i VO PN N X R R O E s

13:
Mixed Code
Programming

This chapter deals with a topic
that can initially be quite hard to
get to grips with because it
involves both C and assembler
code. It's provided here so that
the more advanced coders can get
some appreciation of how
assembler routines that can be
used from C have to be written.
Basically you need to know how
to get from C to assembler code
and back again! Whatever you do
however - Don’'t Panic. This
chapter provides details for
680x0 coders who wish to learn
how to write their own mixed
code. If you are not into
assembler coding then please
don't get disheartened - the
mechanics of actually using
suitably written assembler
routines from C is very easy and
if you concentrate on the overall
ideas the details should fall into
place relatively quickly.

Now you might at this stage be
wondering why mixed coding is
necessary anyway. It's because
despite the fact that C is a very
capable language for serious
Amiga programming, there are
still plenty of times when it pays
to drop into assembler in order to
gain some extra speed or
flexibility. In suitable cases this
fine tuning of important, or
frequently used, areas of a
program or routine can pay
handsome dividends and the
good news is that once you have
seen it done once you will realise
that it's not particularly difficult!
All of the necessary mechanical
details are invariably provided in
the C compiler manuals but the
explanations tend to be written in

Mastering Amiga Programming Secrets
i vEsc e e Bk S S em s peea s L S ke et

a way that only really makes sense once you know a little about
what's going on. The purpose of this chapter then is to provide
some tutorial help by doing three things: firstly, it should provide
some background info so that the accounts you'll read about in
your compiler manuals will (hopefully) make a little more sense.
Secondly, I'll provide some details of the conventions used with two
popular Amiga C compilers (Manx Aztec C and SAS/Lattice C).
Thirdly I'll give you a couple of short, but runable, examples which
will let you see how everything fits together.

Before we start | ought to mention that the techniques I'll be
discussing are what you might call conventional mixed code C
techniques, based on passing function arguments on the stack.
Nowadays C compilers are clever beasts and some, the SAS Amiga C
offering for example, can produce code which jams values directly
into the 680x0 microprocessor registers in readiness for making a
function call. With suitably written functions (ie functions written
to expect arguments provided in such a way) this makes for faster
parameter passing.

For our purposes however it's the stack-based ideas which are of
interest so let’s make a start by talking a bit about the magic which
occurs when you place a call to a routine, say Encrypt(), into a C
source program. The compiler uses such source code statements to
generate a reference to the named routine and, under normal
circumstances, both SAS/Lattice C, the Manx Aztec compiler, and
many others tag on an initial underscore to the function name. The
call to the function Encrypt() therefore has the linker searching for
a routine called _Encrypt and it is this routine, if the linker is going
to successfully resolve the reference, that must be provided in the
assembly language module!

The code which various C compilers produce when they encounter
a function call does vary but the conventions to be followed will
always be detailed in the compiler manual. To start with all you
really need to be aware of is that the end result is usually that any
parameters present in the function call get pushed onto the stack
prior to a call being made to the appropriate subroutine. [say
usually because as just mentioned there are some qualifying
conditions with compilers which allow register arguments to be
used rather than the stack. SAS C for instance then uses an @
character, rather than an underscore, at the start of the function
name.

Writing the appropriate C code is easy. It simply involves placing
suitably named functions calls, with any required parameters, into
the C source. This is done using normal C function conventions -
you can even add your own ANSI C function prototypes to make
sure that the compiler makes the appropriate usage and parameter
type checks!

Mixed Code Programming

The next step involves writing suitable assembly language code and
assembling it to produce linkable object code. A couple of
assembler directives, called XDEF and XREF, have to be used to get
things running smoothly.

XDEF and XREF

XDEF is an assembler directive used to define assembly language
labels as being visible to other modules at link time. If you forget it
the assembly stage will go OK but you'll get errors when linking
because the linker will be unable to resolve the corresponding
function reference in the C code module. XREF goes the other way,
ie it tells the assembler that the information needed about the item
in question will be imported when the assembly language module is
linked. If you forget these then you'll get errors as soon as you try
to assemble your code because the assembler will not realize that
labels have been used whose values are unknown at assembly time.

Most assemblers, incidentally, place a limit on the number of
characters within a label that will be regarded as significant. The
ANSI C compiler standard also only requires that the compiler
caters for six characters with external references, although most
handle more. Either check first, or don't use long names for
functions and variables whose references might need to be passed
between modules. Manx's Aztec C offers #asm and #endasm
statements to allow assembler code to be embedded within the C
source. This can be useful on occasions but, in general, it is safer to
always place assembler code into a separate module.

Specific SAS/Lattice C Conventions

Function Entry rules: upon entry to a function the stack, under
conventional parameter passing conditions, contains the function
arguments placed immediately above the long-word return address
which register A7 (the stack pointer) points to. The arguments
appear in left-to-right order with the leftmost item being the one
immediately above the return address. Here's some standard
function entry steps which need to be carried out:

1. Save register A5, which contains the previous function’s stack
frame pointer. The best idea is to push it onto the stack!

2. Copy the contents of A7 into A5, thereby establishing a frame
pointer for the current function which allows you to access
the arguments indirectly using the A5 base value.

3. Subtract any stack work area needed from A7.

These steps can, if the work area required is less than 32K, be
achieved with the 68000’s LINK instruction. Lattice/SAS expects
registers D2-D7,A2-A4 and A6 to be intact on return so, if any of
these registers are to be used, they must be preserved. Again it is

p{1133

Mastering Amiga Programming Secrets
[l A i S SN ARSI RSP A S I RS & A AR

common practice to place them on the stack. The above stack
oriented procedure forms the basis of a powerful general parameter
passing technique and it's well worth learning about. Lattice/SAS’s
register argument facilities, although good for speed, are less
useful in general and for details of this approach the place to look
is the Lattice/SAS C compiler reference manual. Function return
values are passed back in one or more registers, depending on the
data type declared for the function in question. Here are the return
value details that must be adhered to:

Return Type Size Pass Back Details

char 8 low byte of DO

short 16 low word of DO

long 32 all of DO

float 32 all of DO

pointe 32 all of DO

double ([EEE) 64 passed in DO and DI with high bits in DO
double (FFP) 32 all of DO

Table 13.1. Function return values.

If, incidentally, the function returns an instance of a structure or
union (as opposed to a pointer to the object) then it must define a
static work area (not on the stack) to temporarily hold the returned
object. In these cases the function should return in DO a pointer to
the temporary copy. Having set up the required return value the
routine needs to reverse its entry steps (restoring the registers,
advancing the A7 stack pointer past the work area, and restoring
the previous frame pointer to A5 before exiting via an RTS
instruction. Again the 68000 has an unlink (UNLK) instruction
specifically intended to simplify these operations. (Note that it is
the job of the calling function, and not the called function, to
remove any arguments from the stack).

Aztec C Conventions

The Manx Aztec compiler exports the name of a function or variable
by truncating the name to 31 characters and prepending the
underscore character as mentioned earlier. The function entry
rules, which are similar to Lattice/SAS, are as follows: upon entry to
a function the stack again contains the function arguments placed
immediately above the long-word return address (which register
A7, the stack pointer, points to). The Aztec arguments appear in
left-to-right order with the leftmost item being the one immediately
above the return address.

The Aztec technical manual says that register usage is implemented
according to the Amiga guidelines so all used registers except for

Mixed Code Programming
R R i S BTt Z kP

DO, D1, A0 and Al must be stored and reinstated before the
assembly language routine returns. However in the Assembler
section it states that registers D0O-D3, AO, A1 and A6 are available as
work registers and follows this statement by saying that ‘There is
no need to preserve the values of work registers for other routines’.
I've not had much time to experiment with Aztec C but I'd
recommend sticking, the former, more restricted convention, unless
you know otherwise - it works and it is definitely safe!

In-line, ie embedded, assembler code must also preserve the
contents of the non-scratch registers (ie all except DO, D1, AO and
Al), and in addition should of course not make any assumptions
about the contents of the processor registers — the code that the
compiler currently generates for particular C statements might well
change in later releases. The Manx Aztec function return
conventions, incidentally, again use the DO and D1 data registers.

A Couple Of Examples

If all the references and directives in the above stages are correct
the rest is easy; the C source is compiled, the assembly language
code assembled, and then the modules are linked together with the
startup-code to produce a runable program.

Both of my Shell examples perform similar processes: each asks the
user to type in a string, and then calls an assembly language
routine called Encrypt(). The assembler routine performs an
Exclusive-ORing (EOR) of all bytes in the string which are neither
the NULL terminator nor equal to the mask value itself (thus
protecting C’s definition of a string by ensuring that we don’t
produce any NULL values within the body of the string). Having
done that the program prints the modified string, repeats the
Encrypt() process and prints it again. The second EORing process
does of course result in the original input string being produced.

Where the coding differs is that in the first example the assembler
routine is directly accessing the global variables g_input_string and
g_EOR_mask present in the C source code. In the second example
these variables are not global, and both the start of the string and
the EOR mask value are given to the assembler routine as
parameters, ie the values are provided as arguments during the
Encrypt() call. This means that in the second example we have to
get those arguments from the stack. Here’s the run-down on what
has happened just prior to entering our assembly language patch;
the arguments will have been pushed, in left to right order, onto the
stack. Then the return address will have been placed on the stack.
My second assembler patch uses a LINK a5,#0 instruction which
pushes the contents of a5 onto the stack as well. The result? To
access the two arguments of the C function we’ve had to use
positive offsets of 8 and 12 respectively.

207

Mastering Amiga Programming Secrets
0 N R B R B R oA B P D P 2 R A I S i A S e e

Before you examine the source listings some points should be
made: to start with you will notice in the pieces of assembler code
provided that only the scratch registers AO and DO are used. This
means that, for the examples, it is not necessary to preserve
register contents on the stack. Despite this in the second of the
assembler patches | have included some movem instructions to
save and restore data registers d2-d7. Why? It's just so that you can
see exactly whereabouts in the code those push/pop operations
would be carried out had registers d2-d7 actually been in use.

Some ‘Exclusive’ Info
Exclusive-ORing, more commonly known as EOR, is a logical operation that
is carried out on pairs of bits or bytes and works like this: The
corresponding bits in each of the bit pattern are compared and if they are
different then the result is a 0 value. If the bits are the same, ie either both
bits are set to 0 or both are set to 1, the resultis a 1 value. The truth table for
the EOR operation therefore looks like this:

BIT A

0 1

B 0 0 1

—

T Exclusive OR Truth Table

B 1 1 0

For example: The result of exclusive-ORing 8F hex with 09 hex is 86 hex

which is worked out like this:
Byte 10001111 8F hex
Byte 00001001 09 hex

Result after EOR 10000110 86 hex

Exclusive-ORing is an operation which when performed twice on a byte
using the same EOR masking value produces the original byte back again
(try it and see). This has led to the EOR operation being regularly used for
simple encryption and decipher schemes. Take a piece of text, Exclusive-
ORall the bytes with some mask value and the result will not be immediately
obvious as a piece of text. Carry out the same process again with the same
encryption key (ie the same EOR mask) and the original text will be
produced. Get the key wrong and it won't !

This technique is, incidentally, the basis of a common simple
encryption/decipher scheme and programmers are particularly fond of
using it for encrypting graphics images, sound samples etc., since the
encrypted forms are then not readable by conventional I[FF based
programs.

Figure 13.1. Exclusive OR.

/*Listing 13.1: Exclusive ORing via global variables*/

/* Example-CH13-1.c - uses Exclusive ORing patch via GLOB-
AL variables */

Mixed Code Programming
1

#include <exec/types.h>

#include <stdio.h>

#define MESSAGE1 "Please enter a string\n"
#define MESSAGE2 "Encrypted string is........... "
#define MESSAGE3 "String after 2nd conversion..."
#define LINEFEED 10

#define MAX_CHARS 80

#define EOR_MASK Ox1FTEXT g_input_string[MAX_CHARS+1];
/* space for the user’s string */

UBYTE g_EOR_mask=EOR_MASK; /* Exclusive-ORing conversion
mask */

main ()

{

WORD keyboard_character; UBYTE count=0;printf(MESSAGE1);
while ((keyboard_character=getchar())!=LINEFEED)

{

if (count<=MAX_CHARS) g_input_string[count++]=
keyboard_character;

}s
g_input_string[count]=NULL; /* add terminal NULL */
Encrypt(); /* EOR the string */

printf(“%s %s \n” ,MESSAGE2,g_input_string);
/* show user encrypted
string */

Encrypt(); /* 2nd EOR operation */

printf(“%s %s \n”,MESSAGE3, g_input_string);
/* show string again */

}
/i __ t/
N m==—====== === ===================== *

/*Listing 13.2: The assembler patch without argument pass-
ing*/

* Example CH13-1.s - assembler patch without argument
passing *

* a0 is loaded with the starting address of the input
string

XDEF _Encrypt
XREF _g_input_string

209

Mastering Amiga Programming Secrets
SR T NGO IS EAT SO0V RN (M Y PSSR YA 5 S e A

XREF _g_EOR_mask

K e e e e e e e e e e eaeeeaeeaeeeaeeeaeeeaaaaaan- *
_Encrypt move.l #_g_input_string,a0 start of string
move.b _g_EOR_mask,dO get mask value
subq.l #1,a0
K e e e e e e e e e e *
ENCRYPT_LOOP: addq.l #1,a0 move to next byte
tst.b (a0) check it
beq FINISH quit if NULL terminator
cmp.b (a0),do will it EOR to NULL ?
beq ENCRYPT_LOOP if YES don’t EOR it
eor.b do, (a0) safe to Encrypt
bra ENCRYPT_LOOP keep going
B e e e e e e e e e e e e e *
FINISH rts back to C
% —=== *
® e e e e eaaeaaaaaaan */

/*Listing 13.3: The function parameter based version of
the program*/

/* Example CH13-2.c - version which passes data as parame-
ters */

#include <exec/types.h>

#include <stdio.h>

#define MESSAGE1 "Please enter a stringi\n”
#define MESSAGE2 “Encrypted string is........... "
#define MESSAGE3 "String after 2nd conversion..."
#define LINEFEED 10

#define MAX_CHARS 80

#define EOR_MASK OxiFmain(){TEXT
input_string[MAX_CHARS+1]; /* space for the user’s string*/

UBYTE EOR_mask=EOR_MASK; /* Exclusive-ORing conversion
mask */

WORD keyboard_character

UBYTE count=0;

printf (MESSAGE1) ;

while ((keyboard_character=getchar())!=LINEFEED)

{

if (count<=MAX_CHARS) input_string[count++]=
keyboard_character;

Mixed Code Programming
T I e, e i P Y S)

¥
input_string[count]=NULL; /* add terminal NULL */
Encrypt(input_string, EOR_mask) ; /* EOR the string */

printf(“%s %s \n",MESSAGE2,input_string); /* show user
encrypted string */

Encrypt(input_string, EOR_mask); /* 2nd EOR operation */

printf(“%s %s \n",MESSAGE3, input_string); /* show string
again */

}

/* __ t/

——=—=—====—===—=============—============================== *

/*Listing 13.4: Assembler patch that uses data passed as
function parameters.*/

Example CH13-2.s - assembler patch with argument passing

K i e meceeccoommmenemnemeeneeneeneeeeenenee.e..e..e ... = -. *
XDEF _Encrypt

X o i hececemeccececceceececeeceeceeeeeeeeeeeeee. *
_Encrypt link a5,#0 don’t need any work-
space

movem.1l d2-d7,-(sp) normally where we save

move.l 12(a5),d0 retrieve mask value
move.l 8(a5),a0 retrieve string pointer
subq.1l #1,a0
Ry S R R S *
ENCRYPT_LOOP:addq.1 #1,a0 move to next byte
tst.b (a0) check it
beq FINISH quit if NULL terminator
cmp.b (a0),do will it EOR to NULL ?
beq ENCRYPT_LOOP if YES don’t EOR it
eor.b dO, (a0) safe to Encrypt
bra ENCRYPT_LOOP keep going
K o e e e e e e e e e e e e *
FINISH movem.l (sp)+,d2-d7 normally where we restore
unlk a5
rts back to C
e e e e N e - *

Mastering Amiga Programming Secrets
e e e ey

14:

Creating
Static Tile
Effects - Part
One

The next two chapters deal with
quite a simple topic, namely the
drawing of a set of identical
image tiles onto an Intuition
screen but for a number of
reasons (which will become
apparent during the discussions,
we take the ideas a little further
than would normally be done).

The object of the exercise then is
to produce a routine that takes a
specified graphics object (defined
as an Intuition image) and creates
a tile/wallpaper effect within a
window by drawing multiple
copies of the image using this
sort of caller-defined MxN grid.

Mastering Amiga Programming Secrets
(e T R e T e sy e Y e R ey e 2

N columns

wgongZ

Figure 14.1. Grid of image tiles.

Our story starts with a typical C programmer’s approach. The
simplest way of creating a M x N grid of image tiles is to set up a
twin loop that calculates the grid co-ordinates and uses them in
conjunction with the Intuition library's Drawlmage() routine.
Perhaps the most obvious way to code such a routine would be like
this:

/*Listing 14.1: An obvious C tiling routine*/

void DrawTiles(struct Image *image_p, struct RastPort
*rastport_p, WORD rows, columns)

{
WORD width, height, left=0, top=0, i, j;
width=image_p->Width;
height=image_p->Height;
for (i=0;i<rows;i++)
{
for (j=0;j<columns;j++)
{
DrawImage(rastport_p,image_p,j*width, i*height);

}

}

In practice it is probably better to avoid the multiplication
operations and track the new positions using addition operations
like this:

/*Listing 14.2: These loop operations would be slightly
faster*/

void DrawTiles(struct Image *image_p, struct RastPort
*rastport_p, WORD rows, WORD columns)

{
WORD width, height, left=0, top-0, i, j;
width=image_p->Width;

Creating Static Tile Effects —-Part One
Lo caresetrre Son ltpe maeamiin PG Q%et A NUAL Lt SFSAES P R P s =t ol

height=image_p->Height;
for (i=0;i<rows;i++)
{
for (j=0;j<columns;j++)
{
DrawImage (rastport_p,image_p,left, top);
left+=width;
}
top+=height;
left=0; /* reset for next row */
}
}

As an extra refinement we could allow offset positions to be
provided as function parameters so that we're able to position the
graphics exactly where we want them. Here’s the listing 14.2
example with the required offset modifications:

/*Listing 14.3: A more flexible version of listing 14.2*/

void DrawTiles(struct Image *image_p, struct RastPort
*rastport_p, WORD rows, WORD columns, WORD left_offset,
WORD top_offset)

{
WORD width, height, left=0, top-0, i, j;
width=image_p->Width;
height=image_p->Height;
for (i=0;i<rows;i++)

{

for (j=0;j<columns;j++)

{
DrawImage(rastport_p,image_p,left+left_offset,top+top_off-
set);

left+=width;
}
top+=height;
left=0; /* reset for next row */
}
}

Perhaps the only other worthwhile modification might be to
eliminate the width and height variables by referencing the image
structure directly like this:

Mastering Amiga Programming Secrets

{

{

set);

}

}

/*Listing 14.4: Yet another tile creating routine possi-
bility*/
void DrawTiles(struct Image *image_p, struct RastPort

*rastport_p, WORD rows, WORD columns, WORD left_offset,
WORD top_offset)

WORD left=0, top-0, i, j;

for (i=0j;i<rows;i++)

for (j=0;j<columns;j++)
{
DrawImage(rastport_p,image_p,left+left_offset,top+top_off-

left+=image_p->Width;

top+=image_p->Height;
left=0;

/* reset for next row */

Description:
Call Format:
C Prototype:

Registers:
Arguments:

Notes:

Function Name: Drawlmage()

Return Value:

This is Intuition’s high-level Image drawing routine
Drawlmage(rastport_p, image_p, left_offset, top_offset);
void Drawlmage(struct Rastport *, struct Image *, WORD,
WORD);

a0 al do dl

rastport_p — pointer to a RastPort

image_p - pointer to an Image structure

left_offset — a general left offset which will be used with all of
the linked Image structures of a particular Drawlmage() call.
top_offset - a general top offset which will be used with all of
the linked Image structures of a particular Drawlmage() call.
None

It is convenient to have displacement offsets in the
Drawlmage() call itself because this allows a global offset to
be applied to a whole chain of Image structures. You may
have a group of a couple of dozen separate images on
display but, if you so desire, will be able to reposition the
whole group (keeping their relative positions the same) just
by altering the global offsets.

Creating Static Tile Effects —Part One
[e e 2 SR A AT A L B M A W e

A few experiments would soon tell which of the above C forms were
the most efficient and coupled to some subsequent additional fine
tuning (choice of variable sizes, passing parameters directly in
registers and so on) you might be forgiven for thinking that these
efforts would doubtless produce a reasonable tiling routine. As it
happens, this particular task, over the next couple of chapters, is
going to lead us to some interesting new ground but the point of
interest at the present time concerns not the execution times of the
routines, but the time it took to code them! The first DrawTiles() C
routine that I've just discussed actually took me about one minute
to sketch out and within five minutes | had thrown the code into a
test program (along with a test image), and compiled and run it.
Five minutes after that | had confirmed that the alternative
modifications also worked without problem.

But how does this compare say with using 680x0 assembler code to
do the job? Well, what I'm now going to do is develop an equivalent
routine, again called DrawTiles(), using the low level approach. The
reason I've chosen this simple tiling task as an example is that the
equivalent C code will have been understandable to everyone and
the idea now is to show you exactly how much more work is
involved when you opt for the low - level approach. Along the way
I'll also be able to illustrate both the advantages to be had and
disadvantages encountered. I'll also spend rather more time
discussing various coding issues so that those of you new to 680x0
coding get a chance to understand what'’s going on!

The Low-Level Approach

Quite a few parameters will need to be passed to the low-level
DrawTiles() subroutine and, knowing (from the function
description) that the Intuition Drawlmage() library routine needs a
rastport pointer in a0, an image pointer in al, plus left and top
offsets in dO and d1, the following register arrangements were
chosen:

a0 is to hold the window rastport pointer

al is to hold the image pointer

dO is to hold the starting left offset value
d1 is to hold the starting top offset value

d2 is to hold the required horizontal block count,
ie column count

d3 is to hold the required vertical block count,
ie row count

The subroutine is going to draw each row of the grid by making
Drawlmage() library calls incrementing the function’s left offset
drawing position by the width of the image block each time. Once a
row is complete the top offset value will be increased by the height
of the image and the row drawing operations repeated. Rather

Mastering Amiga Programming Secrets
—

unfortunately we must assume that the parameters present in
a0,al1,d0 and d1 (the scratch registers) will be destroyed by each
and every Drawlmage() Intuition call, and so these values will need
to be copied to other registers at the start of the routine so that
they can be reloaded as required. Also, a copy has to be kept of the
original left offset because one working value will need to be
increased as the images in any given row are drawn but the original
value will still be needed to reset the offset at the start of the
second and subsequent row drawing operations.

Now all of these values could be placed on the 680x0's stack, or
stored in ds.x defined memory locations but, for maximum
execution speed, it is actually faster to keep as much data as
possible within the 68000 registers themselves. | have therefore,
somewhat arbitrarily, chosen to preserve the rastport pointer in
register a2, the image pointer in register a3, the left offset in d7,
the top offset in a4, the column block count in a5 and opted to
collect and store the image width and height in d4 and d5
respectively. Additionally register d6 will be used to store the
current left offset value at any given time. Why were address
registers chosen for some data items? It's simply that almost all
(data and address) registers were needed to store all of the various
items. Here, for easy reference, are the parameters that need to be
supplied:

a0 holds the window rastport pointer

al holds the image pointer

do holds the starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count,
ie column count

d3 holds required vertical block count, ie row count
and here are the details of the additional registers to be used:

d4 used to store image width

ds used to store image height

dé used to hold an updated (current) left offset

d7 copy of original left offset

a2 copy of rastport pointer

a3 copy of image pointer

a4 copy of original top offset

a5 copy of original column count

It's worth remembering that 680x0 instructions which use smaller
size operands do execute more quickly (plus of course memory
space is saved) so graphics routines, such as the one we are
developing, should make all reasonable efforts to take advantage of

Creating Static Tile Effects —-Part One
e I e B S s e T o S R S e T e SR e

such things. In our case a lot of the data, block counts, the
Drawlmage() offsets etc, can in fact be specified as word sized (two
byte) data items.

As with the equivalent C routines, the image width and height
values, which are also word sized fields, do not need to be
explicitly provided because they're stored in the image structure
itself and can be obtained using the word-based form of indirect
addressing with displacement. In the case of the Intuition Image
structure the displacements required to obtain the image width and
height are given the standard ig_Width and ig_Height respectively.
Prefined displacement values are available in the intuition.i include
file but since they have absolute values of 4 and 6 it is easy enough
to define identical EQUate values if necessary and so still write this
type of ‘conventional’ Amiga code:

move.w ig Width(a1),d4 get image width in d4
move.w ig Height(al1),d5 get image height in d5

Coupled to the previously mentioned initial parameter copy
operations, the subroutine entry code therefore ended up looking
like this:

move.l a0,a2 preserve rastport pointer
move.l ai,a3 preserve image pointer

move.w dO0,d6 d6é = current left offset

move.w dO0,d7 preserve left offset for reuse
move.w di,ad preserve top offset

move.w d2,a5 preserve column count for reuse
move.w ig Width(ail),d4 get image width in d4

move.w ig_ Height(al),d5 get image height in d5

Drawing A Row Of Images

Basically we draw the image structure, decrease the horizontal
block count, and test to see whether the count is zero thus
checking that all horizontal images in a row have been drawn. If the
current row is complete we move onto the next row; otherwise we
reset the top offset value in register d1 (which the library call might
have destroyed), update the left offset value (by adding the image
width to it), reset the dO, a0 and al parameters which may also
have been destroyed by the library call, and continue looping back
to the Drawlmage() function:

draw_row CALLSYS DrawImage,_ IntuitionBase

subq #1,d2 decrease count

beq next_row

move.w a4,d1 set top offset

add.w d4,d6 form new left offset

Mastering Amiga Programming Secrets
[T s et e IV I e SR T T R T S e =

draw_row2 move.w dé6,do needed for library function
call
move.l a2,al restore rastport pointer
move.1l a3,al restore image pointer
bra draw_row Kkeep going

At the start of each new row we decrease the count value and check
whether another row needs to be drawn. If it does the left offset
value is reset to the start of the row, the column count (which
represents the number of horizontal blocks to be drawn) is
similarly reset, and the top offset value is increased by the height
of the image. In the following code notice how branch on equal
(beq) and branch always (bra) instructions are used to create
program loops which finally exit when the count values (which are
decreased by one each time a loop is executed) become zero:

next_row subgq #1,d3 decrease count
beq draw_end
move.w d7,d6 reset start left offset for
row
move.w a5,d2 reset column count
move .w a4,d1
add.w ds,d1
move .w di,ad top offset for next row
bra draw_row2
draw_end

The Completed Routine

By collecting all the things discussed so far we can piece together
the reasonably efficient? DrawTiles() routine shown in listing 14.5. |
have incidentally chosen to preserve and restore all registers used
(including scratch registers dO, d1, a0 and al) because this allows
the routine to be quickly re-used without having to reload any
unchanged scratch register based parameter values:

/*Listing 14.5: A nearly complete assembly language ver-
sion of DrawTiles()*/

DrawTiles:

H Requires following parameters on entry:

3 a0 holds window rastport pointer

5 al holds image pointer

5 d0 holds starting left offset value

5 d1 holds starting top offset value

- d2 holds required horizontal block count, ie column

count

Creating Static Tile Effects —-Part One
e T e O e e i S T = O e R Tt S

5 d3 holds required vertical block count, ie row count
movem.1l d0-d7/a0-a5, - (sp) preserve registers
move.l a0,a2 preserve rastport

pointer
move.1l al,a3 preserve image pointer
move.w d0,d6 d6 = current left
offset
move.w do,d7 preserve left offset
for reuse
move.w di,a4d preserve top offset
move.w d2,a5 preserve column count
for reuse
move.w ig_Width(a1),d4 get image width in d4
move.w ig_Height(a1),d5 get image height in d5
draw_row CALLSYS DrawImage,_IntuitionBase
subq #1,d2 decrease count
beq next_row
move.w a4,di set top offset
add.w d4,d6 form new left offset
draw_row2 move.w dé6,do needed for library
function call
move.l a2,a0 restore rastport
pointer
move.1l ad,al restore image pointer
bra draw_row keep going
next_row subgq #1,d3 decrease count
beq draw_end
move.w d7,dé reset start left off
set for row
move.w a5,d2 reset column count
move.w a4,di
add.w ds,d1
move.w di,a4 top offset for next
row
bra draw_row2
draw_end movem.l (sp)+,d0-d7/a0-a5 restore regsters
rts

Are we finished? Not yet, because hidden in this routine is an
inefficiency that is easily eliminated. The CALLSYS macro is

Mastering Amiga Programming Secrets
e o oL e M DS A P i {IOP SRS R el i I S M

pushing a6 ont o the stack and retrieving it after the Drawlmage()
routine returns. In this particular routine these actions are quite
pointless because I've been a little crafty — register a6 has
delberately not been used (except within CALLSYS). There is
therefore no reason why, by just setting up a6 initially, we can’t
replace the CALLSYS generated code with the single equivalent
indirect subroutine call, thus eliminating all of those a6 push/pull
operations. This is typical of the sort of tricks an assembler coder
will be able to spot and use and needless to say most C compilers,
although they are extremely clever at optimising their code
nowadays, will not always come up to the efficiency of a crafty
680x0er! Listing 14.6 shows the code after the modification that
eliminated the register a6 inefficiencies:
/*Listing 14.6: This completed DrawTiles() routine works

in much the same way as the C examples given at the start
of the chapter*/

DrawTiles:
5 Requires following parameters on entry...
- a0 holds window rastport pointer
3 al holds image pointer
- dO holds starting left offset value
: d1 holds starting top offset value
- d2 holds required horizontal block count, ie column
count
3 d3 holds required vertical block count, ie row count
movem.1l d0-d7/a0-a6,-(sp) preserve registers
move.l _IntuitionBase,a6 set up library base
move.l a0,a2 preserve rastport
pointer
move.l al,a3 preserve image pointer
move.w do, dé d6 = current left
offset
move.w do,d7 preserve left offset
for reuse
move.w di,a4d preserve top offset
move.w d2,a5 preserve column count
for reuse
move.w ig_Width(a1),d4 get image width in d4
move.w ig_Height(a1),ds get image height in dS
draw_row jsr _LVODrawImage(a6) a faster alternative

subq #1,d2 decrease count

Creating Static Tile Effects -Part One

-

beq next_row
move .w a4,di set top offset
add.w d4,dé6 form new left offset
draw_row2 move.w d6,do needed for library
function call
move.l a2,a0 restore rastport pointer
move.l a3,al restore image pointer
bra draw_row keep going
next_row subq #1,d3 decrease count
beq draw_end
move.w d7,dé6 reset start left off
set for row
move.w a5,d2 reset column count
move.w a4,d1
add.w ds,d1
move.w di,a4 top offset for next
row
bra draw_row2
draw_end movem.1l (sp)+,d0-d7/a0-a6 restore regsters
rts

Building A Test Framework

All we have to do now is put this subroutine into a runable example
to check that it actually works. In order to do this we need some
code which sets up some example parameters and then calls the
DrawTiles() subroutine. Here is some code that will do for test
purposes:

draw_images move.l dO,al window address in a1

move.l wd_RPort(at),a0 copy rastport pointer
into a0

lea Imagei,ail pointer to image
moveq #20,d0 example left offset
moveq #15,d1 example top offset
moveq #20,d2 example columns count
moveq #10,d3 example rows count
jsr DrawTiles our subroutine

The next program puts the above use of the DrawTiles() routine into
a test framework that is suitable for a68k coders and others without
the official includes. The program opens the dos and intuition
libraries, locks the Workbench screen and opens a window using
the (new from Release 2) OpenWindowTagList function. It then calls

Mastering Amiga Programming Secrets
e ri s i e TSI U N A A S A R e g vt i

the DrawTiles() routine, waits a while, and shuts itself down. This
version can, incidentally, be directly assembled by Charlie Gibb's
A68k assembler:

/*Listing 14.7: DrawTiles() embedded in a runable test
program*/

* Example CH14-1.s
LINKLIB MACRO

move.l a6, -(a7)
move.l \2,a6
jsr \1(a6)
move.l (a7)+,a6
ENDM

CALLSYS MACRO
LINKLIB _LVO\1,\2

ENDM
TRUE EQU 1
NULL EQU
DOS_VERSION EQU
INTUITION_VERSION EQU 36
SECONDS EQU 50
TIME_DELAY EQU 10*SECONDS
TAG_DONE EQU O
WA_BASE EQU $80000063
WA_Left EQU WA_BASE+$01
WA_Top EQU WA_BASE+$02
WA_Width EQU WA_BASE+$03
WA_Height EQU WA_BASE+$04
WA _Title EQU WA_BASE+$0B
WA_DragBar EQU WA_BASE+$1F
WA_PubScreen EQU WA_BASE+$16
wd_RPort EQU 50
ig_Width EQU
ig_Height EQU
_AbsExecBase EQU
_LVOOpenLibrary EQU -552
_LVOCloseLibrary EQU -414

Creating Static Tile Effects -Part One
e R o T VR A G 5 i 5 0 s L e S NS s]

_LVOLockPubScreen EQU -510
_LvouUnlockPubScreen EQU -516
_LVOOpenWindowTagList EQU -606
_LVOCloseWindow EQU -72

_LVODelay EQU -198
_LvODrawImage EQU -114

start lea

moveq

dos_name,a1 load pointer to
library name

#DOS_VERSION,dO any version will do!

open_dos CALLSYS OpenLibrary, AbsExecBase

move.l
beq
open_int lea

moveq

CALLSYS
move.1l
beq
lock_screen lea
CALLSYS
move.l
beq
open_window move.l
lea
CALLSYS
move.l
beq
move.l

move.l

lea
moveq
moveq
move.w
move.w

jsr

d0,_DOSBase save returned pointer
exit check open OK?

intuition_name,a1 load pointer to
library name

#INTUITION_VERSION,dOspecify mimimum lib
version

OpenLibrary,_ AbsExecBase

d0,_IntuitionBase save returned pointer
close_dos check open O0K?
workbench_name, a0 pointer to screen name

LockPubScreen,_IntuitionBase

dO,workbench_p save returned pointer
close_int check return value?
#NULL, a0

tags,at our tag list

OpenWindowTagList,_IntuitionBase

dO,window_p pointer to our window
unlk_screen draw_images
do,at window address in af
wd_RPort(a1),a0 copy rastport pointer
into a0
Imagei,ai pointer to image
#20,d0 example left offset
#20,d1 example top offset
#200,d2 example columns count
#100,d3 example rows count
DrawTiles our subroutine

225

Mastering Amiga Programming Secrets
o 3 o S e N S R AT N NN S WS g e |

wait move.l
CALLSYS
move.l
CALLSYS

unlk_screen move.l
move.l
CALLSYS

close_int move.l
CALLSYS
move.1l
CALLSYS
clr.1

rts

DrawTiles:

5 Requires
5 a0 holds
3 al holds
; dO holds
- d1 holds

5 d2 holds
count

y d3 holds

#TIME_DELAY,d1

Delay, DOSBase

window_p,a0 window to close
CloseWindow,_IntuitionBase

#NULL,a0 screen name not needed
workbench_p,ai screen to unlock
UnlockPubScreen,_IntuitionBase
_IntuitionBase,a1 library to close
CloselLibrary,_ AbsExecBaseclose_dos
_DOSBase,al library to close
CloselLibrary,_ AbsExecBaseexit

do

logical end of program

following parameters on entry...

window rastport pointer

image pointer
starting left offset value
starting top offset value

required horizontal block count, ie column

required vertical block count, ie row count

movem.1l d0-d7/a0-a6,- (sp) preserve registers
move.l _IntuitionBase,a6 set up library base
move.l a0,a2 preserve rastport pointer
move.l al,a3 preserve image pointer
move.w do,dé6 d6 = current left offset
move.w do,d7 preserve left offset for
reuse
move.w d1,a4q preserve top offset
move.w d2,as preserve column count for
reuse
move.w ig Width(a1),d4 get image width in d4
move.w ig Height(a1),d5 get image height in d5

draw_row jsr

subq

_LVODrawImage(a6) a faster alternative

#1,d2 decrease count

Creating Static Tile Effects -Part One
e e T ST e el e ¥ e T T S T (R KR S|

beq next_row
move.w a4,d1 set top offset
add.w d4,d6 form new left offset
draw_row2 move.w d6,do needed for library function
call
move.l a2,al restore rastport pointer
move.l a3, al restore image pointer
bra draw_row keep going
next_row subq #1,d3 decrease count
beq draw_end
move.w d7,dé6 reset start left offset for
row
move.w a5,d2 reset column count
move.w a4,di
add.w ds,d1
move.w d1,a4 top offset for next row
bra draw_row2
draw_end movem.1 (sp)+,d0-d7/a0-a6 restore regsters
rts
_DOSBase ds.1 1
_IntuitionBase ds.1 1
window_p ds.1 1
tags dc.1l WA_PubScreen
workbench_p ds.1 1
dc.1l WA_Left,50
dc.1l WA_Top,20
dc.1 WA_Width,640
dc.1l WA_Height,250
dc.1l WA_DragBar,TRUE
dc.1 WA _Title,window_name
dc.1l TAG_DONE,NULL
dos_name dc.b ‘dos.library',NULL
intuition_name dc.b 'intuition.library',NULL
workbench_name dc.b ‘Workbench',NULL
window_name dc.b 'DrawTiles() Subroutine Test',NULL
Imagei:

Mastering Amiga Programming Secrets
PR e N S B N PP o AT R =P ST S N S Y RSN ST vt |

dc.w0,0 ;XY origin relative to container TopLeft
dc.w2,2 ;Image width and height in pixels
dc.wO snumber of bitplanes in Image

dc.1NULL spointer to ImageData
dc.b$0000,$0001 ;PlanePick and PlaneOnOff
dc.1NULL ;next Image structure

END

separate include files:

/*Listing 14.8 A version of the program that uses include
files to provide the relevant definitions*/

* Example CH14-2.s
INCLUDE intuition/intuition.i
INCLUDE function_offsets.i
CALLSYS MACRO
LINKLIB _LVO\1,\2

ENDM
TRUE EQU
NULL EQU
DOS_VERSION EQU
INTUITION_VERSION EQU 36
SECONDS EQU 50
TIME_DELAY EQU 10*SECONDS
start lea dos_name,at load pointer to
library name
moveq #DOS_VERSION,dO any version will do!
open_dos CALLSYS OpenLibrary, AbsExecBase
move.l d0,_DOSBase save returned pointer
beq exit check open O0K?
open_int lea intuition_name,at load pointer to
library name
moveq #INTUITION_VERSION,dO specify mimimum

1ib version

Normally anyone enthusiastic enough to get into 680x0 Amiga
assembler coding will be enthusiastic enough to obtain the official
Amiga include files. When these are available explicit definitions of
many standard Amiga items can be avoided. Here for reference
purposes is the equivalent version that gets its definitions via

CALLSYS
move.l

beq

lock_screen lea

open_window move.l

draw_images move.l

wait

unlk_screen move.l

ed

close_int

exit

DrawTiles:

CALLSYS
move.l
beq

lea
CALLSYS
move.1l
beq

move.l

lea
moveq
moveq
move.w
move.w
jsr
move.1l
CALLSYS
move.l
CALLSYS

move.1l
CALLSYS
move.1l
CALLSYS
move.l
CALLSYS
clr.1
rts

Requires following parameters on entry...

Creating Static Tile Effects —-Part One
e S S T L S S S s St M BT

OpenLibrary, AbsExecBase

d0,_IntuitionBase save returned pointer
close_dos check open O0K?
workbench_name, a0 pointer to screen name

LockPubScreen,_IntuitionBase

dO,workbench_p save returned pointer
close_int check return value?
#NULL,a0

tags,a1 our tag list

OpenWindowTaglList,_IntuitionBase
dO,window_p pointer to our window

unlk_screen

do,at window address in ail
wd_RPort(a1),a0 copy rastport pointer
into a0
Image1,at pointer to image
#20,d0 example left offset
#15,d1 example top offset
#200,d2 example columns count
#100,d3 example rows count
DrawTiles our subroutine

#TIME_DELAY,d1

Delay, DOSBase

window_p,a0 window to close
CloseWindow,_IntuitionBase

#NULL,a0 screen name not need-

workbench_p,a1 screen to unlock
UnlockPubScreen,_IntuitionBase
_IntuitionBase,al library to close
Closelibrary, AbsExecBaseclose_dos
_DOSBase,at library to close
CloselLibrary,_ AbsExecBase

do

logical end of program

Mastering Amiga Programming Secrets

a0 holds

window rastport pointer

required horizontal block count, ie column

required vertical block count, ie row count

preserve registers
set up library base

preserve rastport
pointer

preserve image pointer

dé = current left
offset

preserve left offset
for reuse

preserve top offset

preserve column count
for reuse

get image width in d4
get image height in dS
a faster alternative
decrease count

set top offset
form new left offset

needed for library
function call

restore rastport

restore image pointer
keep going
decrease count

reset start left off
set for row

reset column count

: al holds image pointer
s d0 holds starting left offset value
s d1 holds starting top offset value
: d2 holds
count
- d3 holds
movem.1l d0-d7/a0-a6,-(sp)
move.l _IntuitionBase, a6
move.1l a0,a2
move.1l al,a3
move.w do,dé6
move.w do,dz7
move.w d1,a4q
move.w d2,as
move.w ig_Width(a1),d4
move.w ig_Height(a1),dS
draw_row jsr _LVODrawlImage (a6)
subq #1,d2
beq next_row
move.w a4,d1
add.w d4,d6
draw_row2 move.w d6,do
move.1l a2,a0
pointer
move.l a3,al
bra draw_row
next_row subq #1,d3
beq draw_end
move.w d7,d6
move.w a5,d2
move.w a4,d1
add.w ds,d1

row

move.w

bra

draw_end movem.1

_DOSBase ds.1
_IntuitionBase ds.l
window_p ds.1
tags dc.1
workbench_p ds.1
dc.1
dc.1
dc.1
dc.1
dc.1
dc.1
dc.1
dos_name dc.b
intuition_name dc.b
workbench_name dc.b

window_name

Imagei:

rts

dc.
dc.
dc.
dc.
dc.
dc.

- T -~ £ ¥ £

dc.b

0,0
2,2
0
NULL

Creating Static Tile Effects —-Part One
A e R A B i e e s Sy B e

di,a4d top offset for next

draw_row2
(sp)+,d0-d7/a0-a6 restore regsters

1

1

1

WA_PubScreen

1

WA_Left,50
WA_Top,20
WA_Width,640
WA_Height, 250
WA_DragBar, TRUE
WA_Title,window_name
TAG_DONE ,NULL
‘dos.library’' ,NULL
'intuition.library’',NULL
‘Workbench' ,NULL

‘DrawTiles() Subroutine Test’,NULL

;XY origin relative to container TopLeft
;Image width and height in pixels
snumber of bitplanes in Image

spointer to ImageData

$0000,$0001 sPlanePick and PlaneOnOff

NULL
END

;next Image structure

231

Mastering Amiga Programming Secrets
S P e WU Sy g P P e S

The Bottom Line

By the time that the low-level DrawTiles() routine had been coded
and tested the best part of a day had gone, and that was despite the
fact that | knew very clearly what needed to be done code-wise. The
big disadvantage with a 680x0 approach then is that it takes far
longer before you get the routine up and running (especially since a
few silly slips are inevitable at the 680x0 coding level).

The assembler routine, like the C routine, certainly works OK but
this is not the end of the story by a long chalk. You'll notice that in
both of the assembler examples I've defined a very small tile (2
pixel by 2 pixel) using an Image structure that, for simplicity, has
no bitplane data. A grid of 100 rows and 200 columns were used so
the tile ended up being drawn 20,000 times. | used a similar image
definition when testing my C routines and this large duplication of
a small tile definition did of course allow the speed of the drawing
operations of the various routines to be compared.

The disturbing news here is that when you run the test programs
you find the C version is as fast as the assembler version. Did we
waste our time trying to improve our tile drawing operations by
using assembler? Should we have stuck to our original C routine
and thought no more about it? Or is there more to this seemingly
simple problem than meets the eye? These are the type of
questions that the next chapteris now going to answer.

15:
Creating
Static Tile
Effects -
Part Two

One of the purposes of the last
chapter was to illustrate the
time/effort differences between C
and assembler level code
development. Another reason that
the comparison was made was to
show you that moving to
assembler is not always going to
improve the execution time of a
routine. In the case of the
routines that we examined, the
main cost of the routine lies in
performing the Drawlmage()
function and with our current
arrangements the routine is
called as many times as there are
tiles in the grid. This is the same
for both the C and the assembler
versions.

Compilers are able to generate
perfectly efficient loop code and
as the comparisons of the last
chapter have now shown there is
absolutely nothing to gained by
converting the DrawTiles()
routine to assembly language
because speed-wise nothing at all
is gained. So does this mean that
we already have the best solution
to our tiling problem? I'm afraid
that the answer here is — most
definitely not. The twin-loop
approach we have so far adopted,
though simple to code, is
unfortunately totally inadequate.

We know that the main execution
time cost of the routine is related
to the image drawing function
calls and because Drawimage()
uses the blitter for its drawing
operations my guess is that the
bulk of the execution time
penalty lies in setting up the
required blitter operations rather
than the blit operations
themselves. In short I'm

233

Mastering Amiga Programming Secrets
T ey e S D S S R S Y B e e P

suggesting that the areas of graphics being drawn are less
important than the number of function calls made and this means
that if improvements are to be made to the DrawTiles() routine then
we need to reduce the number of times Drawlmage() or any
equivalent drawing functions are used.

So what can be done? At the moment the drawing of an M rows x N
columns grid requires M x N drawing function calls. One
improvement could be to draw a row of M tiles and then use the
blitter to copy that row N times down the screen. That would
require M initial tile drawing operations followed by N copy
operations. M+N is of course much less than MxN (eg for a 100 row
x 200 column grid the original approach would need 20,000
function calls whereas the new approach would need only
100+200=300).

This quite obvious improvement enables us to produce some
significant time savings and the following listing 15.1 code shows
how the ideas can be implemented:

/*Listing 15.1: An improved DrawTiles() routine*/

void DrawTiles(struct Image *image_p,struct RastPort
*rastport_p,WORD rows,WORD columns, WORD left_offset, WORD
top_offset)

{
WORD left=0,top=0,row_width,width,height,i;
width=image_p->Width;
height=image_p->Height;
for (i=0j;i<columns;i++)

{

DrawImage(rastport_p,image_p,left+left_offset,
top+top_offset);

left+=width;
}
row_width=left;
for (i=1j;i<rows;i++)
{
top+=height;

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,height,0xCO);

Creating Static Tile Effects — Part Two
L L O N N e e el R s S R O

Function Name: ClipBlitQ

Description: This is a rastport-oriented blitter function that perforrns
blitter operations in an Intuition compatible way

Call Format: ClipBlit(source_rastport p, sourceX_p, sourceY_p,
dest_ rastport_p, destX_p, destY_p, width, height,
minterm);

C Prototype: void ClipBlit(struct Rastport *, WORD, WORD struct
Rastport *, WORD, WORD, WORD, WORD, UBYTE);

Registers: a0 do dl
al da d3
d4 d5 dé
Arguments: source_rastport_p - pointer to source RastPort

dest_rastport_p - pointer to destination RastPort
sourceX_p, sourceY p - top left of area to blit
destX_p, destY_p - top left of destination area

width and height - width and height of area to be
blitted

minterm - blitter logic function for the operation
Return Value: None
Notes: Use 0xCO0 as the minterm for a direct copy

Remember incidentally that when loops are performed a large
number of times all the operations inside the loop take on a special
significance. What may, in isolation, appear to be an almost trivial
time penalty inside a loop can sometimes seriously affect the
overall execution time if that loop were to be performed a large
number of times. This incidentally is why [have chosen to copy the
width and height values of the image being used to separate
variables rather than have indirection operations inside the loops
doing the ClipBlit() work.

This new routine makes a visible difference speed-wise but to see
where further improvements can be made we now ought to think
about how a row of tiles are drawn. A row of say 100 tiles needs
100 draw operations. Can we reduce this? Supposing we created a 2
tile block (which would require 2 drawing operations) and then
copied that block 50 times (another 50 copy based draw
operations). That would allow us to draw 100 tiles using only 52
draw/copy operations. If we created a 4 tile block (which would
need four drawing operations) then only 25 copy operations would
be needed making the total number of function calls 29! Table 15.1
shows some various possibilities:

Mastering Amiga Programming Secrets
e D VW YOy YO e WP e Te)

Copy Operations Blocksize Leff Over Total Function Calls

100 1 0 101

50 2 0 52

33 3 1 37

25 4 0 29

20 5 0 25

16 6 4 26

14 7 2 23

12 8 4 24
11* 9 1 21

10 10 0 20

11 9 1 21 (* factors start

repeating)

Table 15.1. The relationship between block size and the number of draw/copy
function calls required.

It turns out that it isn’t necessary to look at all possibilities — we
only need look as far as the square root of the number concerned. It
can be proved but a bit of experimenting with various test cases
should convince you that the smallest amount of function calls will
occur when the block size is the nearest integer to the square root
of the number of tiles in the row. Once this is accepted it means
that what we need is a routine that draws a single tile using the
Drawlmage() function and then blits that tile a sufficient number of
times to make a tile block of optimum size. It must then blit the
whole block until the first line of tiles is as near compete as
possible before filling in any residual blocks with additional single
tile copy operations. Setting up the block details is quite easy. We
just find the largest integer smaller than the square root of the
number of tiles in a row like this:

block_size=(WORD)floor(sqrt((double)columns));
and then calculate the number of blocks and residual tiles:
block_count=columns/block_size;
residual_tiles=columns-block_size*block_count;
Having done that we draw a tile, use a loop to copy it and produce a
block of the required size, use another loop to copy the block the
required number of times, and then use another loop that copies a

single tile to fill in any gaps at the end of the row. Listing 15.2 is
the code for the routine in its current state:

Creating Static Tile Effects — Part Two
e A e e N e B VR VP Ty e R S PO

/*Listing 15.2: Further improvements to the DrawTiles()
routine*/

void DrawTiles(struct Image *image_p,struct RastPort
*rastport_p,WORD rows,WORD columns, WORD left_offset, WORD
top_offset)

{

WORD block_size,block_count,block_width,residual_tiles,
row_width,width,height,left=0,top=0,1i;

width=image_p->Width;

height=image_p->Height;
block_size=(WORD)floor(sqrt((double)columns));
block_count=columns/block_size;
residual_tiles=columns-block_size*block_count;

DrawImage(rastport_p,image_p,left_offset,top_offset); /*
draw first tile */

left+=width; /* set left position of next tile */
/* and blit remaining tiles of first block... */
for (i=1;i<block_size;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO);

left+=width; /* set left position of next tile */
}
block_width=left;

/* one complete block of tiles have been drawn so now blit
remaining whole blocks of tiles into first row... */

for (i=1;i<block_count;i++)
{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
block_width,height,0xCO);

left+=block_width;
}
for (i=0;i<residual_tiles;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO0);

left+=width;
}

237

238

Mastering Amiga Programming Secrets

row_width=left;
for (i=1;i<rows;i++)

{
top+=height;

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,height,0xCO);

}

The routine has admittedly grown a bit in size and complexity, but
the important thing is that it is much faster than our early efforts.
Get clear in your mind how it works. We calculate the optimum
block size, build the first row (now quite efficiently) and then copy
that row down the screen.

A Crafty Twist Adds Another Dimension

Can you see where further improvements can be made? It’s easy -
we are copying rows one at a time - just like we were originally
copying single tiles when producing the first row. Single row
copying is unnecessary and what we now ought to do is calculate
the optimum depth of a block and subsequently modify the routine
to reduce the number of row copying operations that need to be
performed.

What is the optimum depth? It’s going to be the largest integer less

than or equal to the square root of the number of rows and we

already know how this can be calculated:
row_block_size=(WORD)floor(sqrt((double)rows));

row_block_count=rows/row_block_size; residual_rows=rows-
row_block_size*row_block_court;

With these values now available, and with the first row of tiles
already drawn, we need only do three things. Firstly, copy a
sufficient number of rows to produce an optimum depth block.
Secondly, copy as many of those whole blocks as can be fitted into
the specified row space. Thirdly, fill any remaining residual row
space with tiles. Although the row co-ordinates are different the
operations are of course very similar to those we've already dealt
with and the result of incorporating these new ideas is the routine
shown in listing 15.3 which follows:

/*Listing 15.3: The final iterative version of the
DrawTiles() function*/

void DrawTiles(struct Image *image_p,struct RastPort
*rastport_p,WORD rows,WORD columns, WORD left_offset, WORD
top_offset)

{

Creating Static Tlle Effects — Part Two

WORD block_size,block_count,block_width,residual_tiles,
row_width,width,height,left=0,top=0,i;

WORD row_block_size,row_block_count,block_depth,
residual_rows;

width=image_p->Width;

height=image_p->Height;
block_size=(WORD)floor(sqrt((double)columns));
block_count=columns/block_size;
residual_tiles=columns-block_size*block_count;

DrawImage(rastport_p,image_p,left_offset,top_offset); /*
draw first tile */

left+=width; /* set left position of next tile */
/* and blit remaining tiles of first block... */
for (i=1;i<block_size;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO) ;

left+=width; /* set left position of next tile */

}

block_width=1left;/* one complete block of tiles have been
drawn so now blit remaining whole blocks of tiles into
first row... */

for (i=1;i<block_count;i++)
{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
block_width,height,0xCO);

left+=block_width;
}

for (i=0j;i<residual_tiles;i++)
{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO0);

left+=width;

}
row_width=left;
row_block_size=(WORD)floor(sqrt((double)rows));
row_block_count=rows/row_block_size;

residual_rows=rows-row_block_size*row_block_count;

Mastering Amiga Programming Secrets
G o e e s e SN D T SR T S N

top=height; /* starting row position */
for (i=1;i<row_block_size;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top+top_offset,
row_width,height,0xCO);

top+=height;

}
block_depth=top;

/* two-dimensional block has been drawn so now blit
required number of whole blocks down the screen... */

for (i=1;i<row_block_count;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,block_depth,0xCO);

top+=block_depth;
}

for (i=0;i<residual_rows;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,height,0xCO) ;

top+=height;
}
}

The DrawTiles() Routine - Advanced Approach

Up until now the various stages in the development of our tile
drawing routine should have be quite easy to understand. The
improvements which follow however are not because they involve
recursion, ie the use of routines which, during their operation,
make further calls to themselves! Imagine that you are drawing a
grid of 100 rows by 200 columns. The first job is to draw a row of
200 tiles and we know that this should be done using 14 blocks of
14 tile copy operations plus four additional copies for the residual
tiles needed to complete the row.

At the moment our tile drawer would draw the first tile and then
create the first block of 14 tiles by using a loop that makes 14-1=13
iterations. But we now know that a block of 14 tiles can be drawn
with less than 14 operations - the square root of 14 is 3.74 and so
we really ought to be drawing this first block by initially creating a
block of three tiles, copying this block four times, and then copying

Creating Static Tile Effects - Part Two
I O P I SN R

the two residual tiles needed. With larger numbers the nesting goes
further and the way to get the ultimate minimum as far as the
number of function calls is concerned is to devise a DrawRow()
routine that recursively calls itself to generate its tile blocks as
efficiently as possible.

Recursive routines must have a limiting condition which stops
further calls being made and the limiting condition in our case is
trying to create a one tile block of tiles. In short if a block size is
not greater than one no further recursive calls will be made and
instead we draw the first tile using Intuition’s Drawimage()
function:

if(block_size>1)

left=DrawRow(image_p,rastport_p,block_size,left_offset,top

_offset);

else {

DrawImage(rastport_p,image_p,left_offset+left,
top_offset);

left+=width; /* set left position of next tile to
be drawn */

In order for the row drawing routine to place tiles into the right
positions a simple rule is adopted. Whenever a tile is drawn or
copied, a variable, called left, is incremented by a value equal to the
width of the image being drawn. With recursion now being used all
instances of the recursively—called routine need to know the current
left position for drawing and this means that a DrawRow() call must
return an appropriate value to routine that called it. Listing 15.4
shows the code arrangements that | chose to adopt:

/*Listing 15.4: A recursive DrawRow() routine*/

WORD DrawRow(struct Image *image_p,struct RastPort *rast-
port_p,WORD columns, WORD left_offset, WORD top_offset)

{
static WORD left; /* initialized to zero for first use */

WORD block_size,block_count,block_width,residual_tiles,
width,height,i;

width=image_p->Width;

height=image_p->Height;
block_size=(WORD)floor(sqrt((double)columns));
block_count=columns/block_size;
residual_tiles=columns-block_size*block_count;

if(block_size>1) left=DrawRow(image_p,rastport_p,
block_size, left_offset,top_offset);

242

Mastering Amiga Programming Secrets
T S e W R M R T N WY C]

else {

DrawImage(rastport_p,image_p,left_offset+left,
top_offset);

left+=width; /* set left position of next tile to be

drawn */
}
/* one complete block of tiles have been drawn so now blit
remaining whole blocks of tiles into first row... */

block_width=1left;
for (i=1;i<block_count;i++)

{

ClipBlit(rastport_p,left_offset+left-block_width,
top_offset,rastport_p,left_offset+left,top_off
set, block_width,height,0xCO) ;

left+=block_width;
}

for (i=0j;i<residual_tiles;i++)

{

ClipBlit(rastport_p,left_offset+left-width,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO);

left+=width;
}

return(left);

}

At the highest recursion level the left value returned by DrawRow()
will be the pixel width of the row and by coding the column
drawing operations in the same recursive style we can get a
situation whereby both row creation and row copying operations
are minimised. The row copy operations need to know the width of
the row and so an extra parameter is needed resulting in the
highest level of the new recursive form of our DrawTiles() routine
looking like this:

row_width=DrawRow(image_p,rastport_p,columns,left_offset,
top_offset);

CopyRows (image_p,rastport_p,rows,row_width,left_offset,
top_offset);

Recursion is a difficult topic to understand and recursive routines
are difficult to test. One good idea is to study the code and trace

Creating Static Tile Effects - Part Two
e e e e S Ry PO)

out its potential actions with pen and paper. The following
example, listing 15.5, includes a variable called n whose job is
simply to count the number of draw/copy operations performed:

/* __ ﬁ/

/*Listing 15.5: A trace version of the new DrawTiles()
routine*/

void DrawTiles(struct Image *image_p,struct RastPort
*rastport_p,WORD rows,WORD columns, WORD left_offset, WORD
top_offset)

{
WORD row_width;

row_width=DrawRow(image_p,rastport_p,columns,left_offset,t
op_offset);

CopyRows (image_p,rastport_p,rows,row_width,left_offset,top
_offset);

WORD DrawRow(struct Image *image_p,struct RastPort *rast-
port_p,WORD columns, WORD left_offset, WORD top_offset)

{

static WORD left; /* initialized to zero for first use
* /WORD block_size,block_count,block_width,residual_tiles,
width,height,i,n=0;

width=image_p->Width;

height=image_p->Height;
block_size=(WORD)floor(sqrt((double)columns));
block_count=columns/block_size;
residual_tiles=columns-block_size*block_count;

if(block_size>1)
left=DrawRow(image_p,rastport_p,block_size,left_offset,top
_offset);

else {

DrawImage(rastport_p,image_p,left_offset+left,
top_offset);

left+=width; /* set left position of next tile to be

drawn */
n++;
}
/* one complete block of tiles have been drawn so now blit
remaining whole blocks of tiles into first row... */

block_width=left;

for (i=1;i<block_count;i++)

Mastering Amiga Programming Secrets
0137 05 N P AR T B S S e R S e i i

{

ClipBlit(rastport_p,left_offset+left-block_width,
top_offset,rastport_p,left_offset+left,
top_offset,block_width,height,0xCO) ;

left+=block_width;
n++;
}
for (i=0;i<residual_tiles;i++)

{

ClipBlit(rastport_p,left_offset+left-width,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO);

left+=width;
n++;
}
printf (“%sd\n”,n);
return(left);

WORD CopyRows(struct Image *image_p, struct RastPort
*rastport_p,WORD rows, WORD row_width, WORD left_offset,
WORD top_offset)

{
static WORD top; /* initialized to zero for first use */

WORD block_size,block_count,block_depth,residual_rows,
height,i,n=0;height=image_p->Height;

block_size=(WORD)floor(sqrt((double)rows));

block_count=rows/block_size;residual_rows=rows-
block_size*block_count;

if(block_size>1)
top=CopyRows(image_p,rastport_p,block_size,row_width,left_
offset,top_offset);

else {
top+=height;

}
/* two-dimensional block has been drawn so now blit
required number of whole blocks down the screen... */

block_depth=top;
for (i=1j;i<block_count;i++)

{

Creating Static Tile Effects - Part Two
I e e s e R it i A i et s L)

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,block_depth,0xCO);

top+=block_depth;

n++;

}

for (i=0j;i<residual_rows;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,height,0xCO);

top+=height;

n++;

}

printf("%d\n",n);
return(top);

When the routine shown in listing 15.5 was placed into a test
program that created a 100 row by 200 column tile grid, the values
of n returned were 3, 5, 17, 2, 3, and 9. These represented three
recursive calls to DrawRow() and three recursive calls to
CopyRows(). This is where the numbers come from:

For the 200 colurmns

14 blocks of 14 tiles + 4 residual tles= 18-1 =17 draw/copy operations
4 blocks of 3 tiles + 2 residual tiles = 6-1=5 draw/copy operations
3 tiles to create first block 3 draw/copy operations

For the 100 rows

10 blocks of 10 rows + O residual rows 10-1=9 draw/copy operations
3 blocks of 3 rows + 1 residual row 4-1=3 draw/copy operations
2 rows to create first block 2 draw/copy operations

Table 15.2. Test values.

What this means, in this particular test case, is that only 39
draw/copy operations were needed in order to create a tile
arrangement of 200 x 100, ie 20,000 tiles. In this case our recursive
routine is only doing about 0.2% of the drawing/copying function
setting up work that our first routine of the previous chapter was
doing. In other words it is about 500 times more efficient!

245

Mastering Amiga Programming Secrets
e T S o e e U e e e T e e)

Listing 15.6 shows the final version of the routine (without the
trace statements):

/* __ */

/*Listing 15.6: The final recursive DrawTiles() routine
and the end of our tile drawing road!*/

void DrawTiles(struct Image *image_p,struct RastPort
*rastport_p,WORD rows,WORD columns, WORD left_offset, WORD
top_offset)

{

WORD
row_width;row_width=DrawRow(image_p,rastport_p,columns,lef
t_offset,top_offset);

CopyRows (image_p,rastport_p,rows,row_width,left_offset,top
_offset);

}
/i __ */

WORD DrawRow(struct Image *image_p,struct RastPort *rast-
port_p,WORD columns, WORD left_offset, WORD top_offset)

{
static WORD left; /* initialized to zero for first use */

WORD block_size,block_count,block_width,residual_tiles,
width,height,i;

width=image_p->Width; height=image_p->Height;
block_size=(WORD)floor(sqrt((double)columns))
sblock_count=columns/block_size;

residual_tiles=columns-block_size*block_count;

if(block_size>1)
left=DrawRow(image_p,rastport_p,block_size,left_offset, top
_offset);

else {

DrawImage(rastport_p,image_p,left_offset+left,
top_offset);

left+=width; /* set left position of next tile to be

drawn */

}
/* one complete block of tiles have been drawn so now blit
remaining whole blocks of tiles into first row... */

block_width=1left;
for (i=1j;i<block_count;i++)

{

Creating Static Tile Effects - Part Two
T e S TR v S Ty TS S T N

ClipBlit(rastport_p,left_offset+left-
block_width,top_offset,rastport_p,
left_offset+left, top_offset,block_width,
height,0xCO);

left+=block_width;
}
for (i=0j;i<residual_tiles;i++)

{

ClipBlit(rastport_p,left_offset+left-width,top_offset,
rastport_p,left_offset+left,top_offset,
width,height,0xCO);

left+=width;

}
return(left);

WORD CopyRows(struct Image *image_p, struct RastPort
*rastport_p,WORD rows, WORD row_width, WORD left_offset,
WORD top_offset)

{
static WORD top; /* initialized to zero for first use */

WORD block_size,block_count,block_depth,residual_rows,
height,i,n=0;

height=image_p->Height;
block_size=(WORD)floor(sqrt((double)rows));
block_count=rows/block_size;
residual_rows=rows-block_size*block_count;

if(block_size>1) top=CopyRows(image_p,rastport_p,
block_size,row_width,left_offset,top_offset);

else {
top+=height;

}
/* two-dimensional block has been drawn so now blit
required number of whole blocks down the screen... */

block_depth=top;
for (i=1;i<block_count;i++)
{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,block_depth,0xCO);

top+=block_depth;

247

248

Mastering Amiga Programming Secrets
e e e T e P Y T S R]

}

for (i=0;i<residual_rows;i++)

{

ClipBlit(rastport_p,left_offset,top_offset,
rastport_p,left_offset,top_offset+top,
row_width,height,0xCO);

top+=height;
}

return(top);

Some Important Ideas

It should now be apparent that if you want a routine to be as fast as
possible then you must think about its underlying basis, ask
yourself where the main execution time penalties are occurring,
and ask also what you can do about them. When the simple twin-
loop C tile drawing approach of the last chapter was being used to
create a tile drawing routine things were fine as long as only small
numbers of rows and columns were involved. When the numbers of
rows and columns became large however the number of function
calls required increased dramatically and it was to see the effect of
this that | chose very small tile sizes in the example programs.

The re-coding using assembly language during the previous chapter
did nothing to improve matters and there’s an important lesson to
be learnt here - the attempted speed up failed quite simply because
we were not addressing the root cause of the problem. The moral of
this chapter? It is probably that if you need dramatic speed
increases in a routine then the chances are that what you really
need is a better algorithm for whatever you are doing. This
therefore is often where the bulk of your design and coding efforts
should be concentrated.

We've been doing just this in this chapter and the improvements
made to the DrawTiles() routine are dramatic and become
increasingly so as the numbers of rows and columns increase. A
similar routine could now be developed in low-level 680x0 code
although it would be no faster that the one we've developed in C
because the function calls overhead that remain would be the same
in both cases. If you don’t believe me - write a 680x0 version and
see!

One last thing needs to be said concerning the arrangements finally
adopted for the tile drawing operations. Developing algorithms
which tackle problems in efficient, but often less intuitively obvious,
ways is something that comes naturally to very few people and
most people (myself included) have to work hard to achieve good

Creating Static Tile Effects - Part Two
[PREBAES 3oz, s e B S EL A TG s L ko o e Raner S]

results. There’s no doubt that the more practice you get problem
solving the better your chances of success in general and this
means that, within reason, you make a point of jumping at each and
every opportunity that presents itself. [say ‘within reason’ because
I've found one particular criteria to be absolutely crucial to success
- you must be interested in the problem either because you need to
make practical use of the solution you discover, or because you
find the problem itself interesting from an academic viewpoint.
Either way your interest will usually prove to be a valuable ally!

249

250

Mastering Amiga Programming Secrets
R T e e e s e

16:
Creating
Mosaic
Effects

This chapter deals with another
problem that involves finding a
better solution than that which is
most obvious. A few years ago |
was playing around with some
ideas involving the encryption of
two-dimensional picture data
using a two-key based, two-
dimensional rearrangement
method. The idea was to imagine
that a picture was composed of
an arbitrary number of squares or
tiles and then use selected
horizontal and vertical
encryption keys to apparently
randomly rearrange the ordering
of the tiles. In doing this the
picture became unrecognisable
yet, given the right encryption
keys, the picture could be rapidly
restored to its original form.

During the course of these,
essentially theoretical, studies |
was interested to see the visual
effect of the various
rearrangements and so the
routines were tested in a way that
showed the step-by-step changes
as they occurred. When | saw the
results | realised that somewhere
here was a method for producing
mosaic rearrangements (such as
those you see on TV where the
picture breaks into hundreds of
small squares which are then
randomly disintegrated, faded or
otherwise modified). Plenty of
other uses came to mind
including games effects, screen
wipes, jigsaw puzzles etc.

As with the previous chapter tile
size is irrelevant. We may be
shifting 1 pixel by 1 pixel blocks
around, or the blocks may consist
of 4 x 4 pixels, 20 x 100 pixels
and so on. Let’s suppose then that

252

Mastering Amiga Programming Secrets

we consider a rectangular source area of the screen as being broken
into an unspecified number of smaller rectangular blocks. It seems
reasonable to identify these blocks by some co-ordinate scheme
and I've opted for using the top left co-ordinates in all cases. If we
do this it becomes possible to create a nice simple model whereby
identified screen blocks such as:

", LRLLEL SRR etc
kmmm—— k=== ae=

Kemmm= m——

e

B

:

etc.

Figure 16.1. Screen blocks.

are represented just by their virtual top-left co-ordinates:

b b * .. etc (0.0) (1,0) (2,0).. etc.
* o ©1) @) @1
<¢—— top left points
kL k. are stored as (02) (1,2)
. the array —&
(0.3)... etc.
* .
etc.

Figure 16.2. Co-ordinate positions.

In other words we could describe the locations of all of the tiles in a
mosaic pattern using an array containing the (x,y) block number co-
ordinates. To divide up, randomly rearrange, and copy a picture it
stands to reason that all blocks must be used and the obvious way
to do this is to generate all possible co-ordinate pairs for the tile
area in question and randomly rearrange them. If however you have
a 200 x 100 block rearrangement to do you would need to create a
randomly rearranged list of 20,000 co-ordinate pairs. As the
numbers of blocks involved increases so too does both the amount

Creating Mosaic Effects
[t e T R e DRSS W s S]

of memory needed for this list, and the amount of time needed to
randomly rearrange it.

Making A Start

The task then is to find a better (quicker and more memory
efficient) approach and essentially the problems we are solving are
these: firstly, we want to find a way of generating a random, or
apparently random, set of block (x,y) co-ordinates without eating
into too much memory (ie without building lists of every possible
co-ordinate pair). Secondly we want a way of accessing these co-
ordinates using a mechanism which ensures that, after the
operations have been completed, tiles corresponding to every co-
ordinate pair will have been used.

Now rather than use a two dimensional array I will, in the following
discussion, be using separate one dimensional arays. There's no
real difference as far as coding complexity goes, but the one
dimensional (vector) approach does make the explanations a little
easier to understand.

One obvious way to ensure that every mosaic block would be used
is to use a twin loop like this:

for (x=0; Xx<XMAX; Xx++)

{
for (y=0; y<YMAX; y++)
{
do something with block (x,y)
eg copy block (x,y) to location (x+offset_x,
y+offset_y)
}
}

This certainly moves all of the blocks but it does so in a uniform
way. What we want is some way of making the effect look random
so to start with let’'s assume that we have a mosaic block
vertical_block_count blocks high and horizontal_block_count blocks
wide. Our first step is to create a complete, but randomised, list of
vertical co-ordinates by initializing and rearranging the values like
this:

for (n=0; n<vertical_block_count; n++) { yvector[n]=n; }

for (n=0; n<vertical_block_count; n++)

{

r=rand() % vertical_block_count; /* identify an r
value */

d=yvector([n]; /* swap r’th and n’th array elements */

yvector[n]=yvector[r];

253

Mastering Amiga Programming Secrets

yvector[r]=d;

}

We obtain the horizontal co-ordinate set in a rather different
fashion. Instead of calculating a full co-ordinate set we just, for
reasons that will become apparent, calculate a set of random offset
values like this:

for (n=0; n<horizontal_block_count; n++)

{

offset[n] = rand() % horizontal_block_count;

}

Although there are horizontal_block_count items in this set and
they all lie in the range 0 to (horizontal_block_count-1) you should
note that, because rand() can return the same number more than
once, the set of values is unlikely to be the complete set of x co-
ordinate values. In other words duplicates may occur and so some
numbers of the co-ordinate set are likely to be missing. Perhaps
surprisingly this will not matter!

The Co-ordinate Generation Scheme

This is where the tricky stuff begins. Take a look at the program
shown in listing 16.1 and think about the code in relation to the

ideas just mentioned:

/*Listing 16.1: Generation of the x/y co-ordinate val-
ues.*/

/* Example CH16-1.c */

#include <stdio.h>

#include <stdlib.h>

#define X_MAXSIZE 150

#define Y_MAXSIZE 150

main()

{

int n,m,r,d,
vertical_block_count,horizontal_block_count,
offset[X_MAXSIZE], yvector[Y_MAXSIZE],

X,ty;
/* some constant values for the copy (example specific)... */
vertical_block_count=5; /* alter as required */

horizontal_block_count=6; /* for other block sizes */
/* randomizes the vertical (y) co-ordinates... */

for (n=0; n<vertical_block_count; n++) { yvector[n]=n;
}for (n=0; n<vertical_block_count; n++)

Creating Mosaic Effects
—

{

r=rand() % vertical_block_count;

d=yvector[n];

yvector[n]=yvector|[r];

yvector[r]=d;

}
/* create the offset values... */
for (n=0; n<horizontal_block_count; n++)

{

offset[n] = rand() % horizontal_block_count;

}
/* now compute x/y tile co-ordinates and print results... */
for (m=0; m<vertical_block_count; m++)

{

printf("m=%d\n\n",m);

for (n=0; n<horizontal_block_count; n++)

{
/* calculate the block co-ordinates... */
X = n;
y

printf("yvector=%d\toffset= %d\t\t",yvector[m],
offset[n]);

printf (" x=%d\ty=%d\n\n",x,y);

((yvector[m] + offset[n]) % vertical_block_count);

}

It is not too difficult to see from listing 16.1 that the x co-ordinates
generated within the double loop always take the current value of
the inner loop variable n (we can incidentally therefore eliminate x
from the loop and use n directly). Note also that this means the
values of n generated will cover every x co-ordinate position for
each value of m used in the outer loop.

The calculation of a set of y values is more awkward and best
explained by imagining first what would happen if y was calculated
using the expression:

y=yvector[m];
Each value of m in the outer loop would produce a given y value

and we know yvector(] contains all possible y co-ordinates (because
we generated them and then just swapped them around). So, the

Mastering Amiga Programming Secrets
oo ramn s s e ot D B D e e R N LL SRS o m i

outer loop covers all the y values whilst the inner loop generates all
x values for each y value generated. This of course means that the
whole set of (x,y) co-ordinate values are generated. By adding the
offset value and using the modulus function (%) to keep the y
position within the range of allowed values, ie using this
expression:

y = ((yvector[m] + offset[n]) % vertical_block_count);

we are able to break up the order in which the y values are
generated and it is this which generates the randomising effect. To
get an idea of the values produced look at table 16.1 which shows
the results that the listing 16.1 program produces:

Creating Mosaic Effects

m=0
yvector=1
yvector=1
yvector=1
yvector=1
yvector=1
yvector=1
m=]
yvector=3
yvector=3
yvector=3
yvector=3
yvector=3
yvector=3
m=2
yvector=0
yvector=0
yvector=0
yvector=0
yvector=0
yvector=0
m=3
yvector=4
yvector=4
yvector=4
yvector=4
yvector=4
yvector=4
m=4
yvector=2
yvector=2
yvector=2
yvector=2
yvector=2
yvector=2

offset=1
offset= 2
offset= 3
offset= 4
offset=3
offset= 2

offset=1
offset=2
offset=3
offset=4
offset=3
offset=2

offset=1
offset=2
offset= 3
offset= 4
offset=3
offset=2

offset=1
offset= 2
offset=3
offset= 4
offset=3
offset=2

offset=1
offset= 2
offset=3
offset= 4
offset=3
offset= 2

X=
x=1
x=2
x=3
x=4
x=5

x=0

=1
x=2
x=3
x=4
x=5

x=0
x=1
x=2
x=3
x=4
x=5

{1t | [| R |
O —= DN — O B

< < < < < <

I
— DD WD~ O

< < < < < <<

y=3
y=4
y=0
y=1
y=0
y=4

Table 16.1. The output obtained from program 16.1.

Every (x,y) co-ordinate position has been covered and this is quite
general - it'll work for any tile arrangement. This gives us a way of
generating (apparently randomly) each and every tile location so
what we need to do now is convert these tile co-ordinates to real
screen locations. As well as converting the tile co-ordinates to pixel
co-ordinates I've also added base addresses of source and target

257

Mastering Amiga Programming Secrets
et e R T e R s s s)

screen areas for a little extra flexibility. ClipBIt() is being used to
move the data but obviously how you use the generated co-
ordinates depends on what you are wanting to do. Normally some
of the operations shown in the listing 16.2 code would be coded
together but, for clarity, I've kept the individual stages
distinguishable:

/*Listing 16.2: The guts of the mosaic transfer routine*/
.for (m=0; m<vertical_block_count; m++)

{
for (n=0; n<horizontal_block_count; n++)
{
/* calculate the block co-ordinates... */

y=source_y = ((yvector[m] + offset[n]) %
vertical_block_count);

x=n*pixel_block_width; /* now translate to real
screen co-ordinates... */

y*=pixel_block_height;

dest_x=dest_x_base+x; /* add the base addresses and
move the data... */

dest_y=dest_y_base+y;

X+=x_source_base;

y+=y_source_base;

/* and use the blitter to do the hard work... */

ClipBlit(source_rastport_p, x, Yy,
dest_rastport_p, dest_x, dest_y,

pixel_block_width, pixel_block_height,
minterm);

}

A Complete Mosaic Copy Routine

If we put both the co-ordinate generation and co-ordinate use ideas
together we can now build a call-able routine, shown in listing 16.3
that can perform these mosaic transfer operations automatically:

/*Listing 16.3: The completed mosaic copy routine!*/

void MosaicCopy(WORD vertical_block_count,
WORD horizon tal_block_count, struct
RastPort *source_rastport_p, struct
RastPort *dest_rastport_p,

WORD pixel_block_height, WORD
pixel_block_width,

WORD source_x_base, WORD source_y_base,

Creating Mosaic Effects
|

WORD dest_x_base, WORD dest_y_ base,
UBYTE minterm)

{

WORD d,m,n,r,x,y;yvector [MAXSIZE] ,of fset [MAXSIZE],dest_x,
dest_y;

for (n=0; n<vertical_block_count; n++) { yvector[n]=n; }
for (n=0; n<vertical_block_count; n++)

{

r=rand() % vertical_block_count;

d=yvector[n];

yvector[n]=yvector[r];

yvector([r]=d;

}
for (n=0; n<horizontal_block_count; n++)
{
offset[n] = rand() % horizontal_block_count;
}

/* now compute (x,y) tile co-ordinates and move them... */
for (m=0; m<vertical_block_count; m++)

{

for (n=0; n<horizontal_block_count; n++)

{

y = ((yvector[m] + offset[n]) %
vertical_block_count);

/* now translate (x,y) position to real screen
co-ordinates... */

x=n*pixel_block_width;
y*=pixel_block_height;

dest_x=dest_x_base+x; /* add the base addresses and
move the data */

dest_y=dest_y_base+y;

x+=source_x_base;

y+=source_y_ base;

ClipBlit(source_rastport_p, x, Yy,
dest_rastport_p, dest_x, dest_y,

pixel_block_width, pixel_block_height,
minterm) ;

Mastering Amiga Programming Secrets
Y S e e e B o P e O e g o)

The Blitter Minterm Byte

In the listing 16.3 routine the minterm byte is the logic function
that tells the blitter how to perform its copy operations when
reading from any or all of its three source dma channels (A,B, and
C) and writing to its destination channel D. ClipBlit() associates
channel B with the source rastport and channel C with the
destination rastport, so to make a direct copy from the source
rastport the minterm value should be set to 0xCO. Table 16.2 lists
some common equation/minterm values involving blitter channels
B and C (further information can be found in the Addison Wesley

RKM Hardware manual).

Equation Minterm
D=B 0xCC
D=B' 0x33
D=C 0x55
D=B'+C 0xBB
D=BC 0x88
D=BC' 0x44
D=B'C 0x22
D=B+C' 0xDD
D=BC' 0x77

(Direct Copy)
(Inverted copy)
(Inverted destination)

Table 16.2. Common ClipBlit() related logic equations and blitter minterm equvalents.

Mosaic Disintegration

Now that we've got a copy routine available, disintegrating a picture
whilst re-building elsewhere is easy. We just make an additional
ClipBIit() call to clear each tile after it has been copied so that as the
source area disintegrates the destination graphic will be built up.

Here's the modification needed:

/*Listing 16.4: Code modification needed to produce ‘mosa-

ic disintegration’*/

void MosaicDisintegration(WORD vertical_block_count, WORD

horizontal_block_count,struct
RastPort *source_rastport_p,
struct RastPort *dest_rastport_p,

WORD pixel_block_height,
WORD pixel_block_width,

WORD source_x_base, WORD
source_y_base,

WORD dest_x_base, WORD
dest_y_base,

UBYTE minterm)

Creating Mosaic Effects
e O S S D R

{

WORD d,m,n,r,x,y;yvector [MAXSIZE],offset[MAXSIZE],dest_x,
dest_y;

for (n=0; n<vertical_block_count; n++) { yvector[n]=n; }
for (n=0; n<vertical_block_count; n++)

{

r=rand() % vertical_block_count;

d=yvector[n];

yvector[n]=yvector[r];

yvector([r]=d;

}

for (n=0; n<horizontal_block_count; n++)

{

offset[n] = rand() % horizontal_block_count;

}
/* now compute (x,y) tile co-ordinates and move them... */
for (m=0; m<vertical_block_count; m++)

{

for (n=0; n<horizontal_block_count; n++)
{
y = ((yvector[m] + offset[n]) % vertical_block_count);

/* now translate (x,y) position to real screen
co-ordinates... */

x=n*pixel_block_width;
y*=pixel_block_height;

dest_x=dest_x_base+x; /* add the base addresses and
move the data */

dest_y=dest_y_base+y;

x+=source_x_base;

y+=source_y_base;

ClipBlit(source_rastport_p, x, Yy,
dest_rastport_p, dest_x, dest_y,
pixel_block_width, pixel_block_height, minterm);
ClipBlit(source_rastport_p, x, Yy,
dest_rastport_p, x, y,
pixel_block_width, pixel_block_height, 0);

Mastering Amiga Programming Secrets
[Boeras robs e et ek sy S ST) Sl al N L A e N RN I |

}

There are of course a whole range of related effects that can be
produced using the same basic randomisation framework. Random
mosaic wipes for instance can be achieved by just filling in
background colour tiles on top of the original graphic. If,
incidentally, variable timing is required for these types of effects all
you have to do is insert a time delay after the blit operations. Once
you've got the hang of coding the randomisation process all manner
of uses will doubtless suggest themselves!

17:
Scrolling and
Intuition

This chapter is going to deal with
one of those ‘not strictly legal’
grey areas that nice programmers
are not supposed to mention. The
subject is the smooth vertical
scrolling of Intuition screens
from within the Intuition
programming environment. I've
chosen this subject because it is
something which does not seem
to get much coverage. Cynics will
tell you that the reason is
because such things should not
be done in the first place but I
disagree — in fact I think that
experiments such as the ones
we'll be doing are, at the very
least, a good way to learn more
about the Amiga.

An Amiga display, as you’ll
doubtless know, is made up of
areas of chip memory called
bitplanes such that each bit in a
bitplane represents a pixel
position on the display. By taking
the appropriate pixel bit from
each bitplane the Amiga’s display
hardware generates a value which
represents a colour register
number and it is the contents of
that register that determines the
on-screen colour of the pixel (this
is the colour indirection scheme
that was mentioned in chapter
12).

The structure used to tell the
system where to find the
bitplanes is called a BitMap and if
you look in the graphics/gfx.h
header file you will see that it has
the following arrangement:

Mastering Amiga Programming Secrets
50 AR R A S RENEAT 20 S LS S B PO AR S T SR SR U e el

struct BitMap

{

UWORD BytesPerRow;

UWORD Rows;

UWORD Flags;

UBYTE Depth;

UBYTE pad;

PLANEPTR Planes[8]; /* pointers to the bitplanes */
}s

Now there is a system routine in the graphics library called
ScrollVPort() which can be used to create scroll effects but a better
course of action in this case is to take a lower level approach
especially since vertical playfield scrolling, as most Amiga hackers
and demo writers know, is relatively straightforward. The trick is to
arrange for the display’s bitplane pointers to be increased (or
decreased) by an amount which corresponds to the pixel-width of
the screen. If you do this at the right time then the result is a
flicker-free smooth scroll! With a full screen display there’s a minor
snag - as you increase (or decrease) the bitplane pointers you bring
new memory into the screen display area. The result, in most cases,
is that you get rubbish displayed on the screen as the scroll
proceeds. The secret is of course to set up an oversized display-
memory area so that you only scroll within the bounds of valid
graphics data.

This subject domain, which leads into the realms of do-it-yourself
¢copper lists and so forth, is quite well documented even though it
may not be particularly easy to get to grips with on first reading.
For detailed explanations a good place to start, incidentally, is the
Addison Wesley Amiga Hardware manual. The situation | want to
concentrate on is a little different from the norm because it
concerns the manipulation of an existing display and not the
creation of a new one: let's imagine that we're working within an
Intuition environment, ie we have in use screens, windows, menus
etc. In opening a screen Intuition will have done a lot of work for
us. Amongst its many jobs it will have built a View structure
together with the Copper list necessary to describe the display. It
may even have set up a BitMap and allocated the necessary bit-
plane memory (if we have chosen not to supply our own). Under
these conditions we don’t need to create our own Copper lists... wé
just need to find out how to dynamically modify those which
Intuition has created. In short we need to find and adjust the
Copper list instructions which jam the bitplane pointers into the
Copperhardware registers.

All that’s necessary then, once Intuition has prepared its display, is

Scrolling and Intuition
e e e N e, T LI

a bit of Copperlist searching and remember here that it is the real
hardware list, the one which the Copper itself reads, that we are
searching in this case: There is a pointer to this in the View
structure that Intuition sets up and so the first thing we need to do
is get the address of this structure (there is a ViewAddress()
intuition library call available for this) and then use a loop to locate
the appropriate bitplane instructions. After that, we just replace the
original bitplane pointer values with new values. This, in case
you've wondered, is what is meant by that delightful expression:
poking a Copperlist.

Searching The Copper List

The Copper instruction to be found is the first of a series which put
data into the bitplane pointer registers and it looks like this:

move register data-value
00e0 some 16 bit data value
instruction first of the values
to be found to be ‘modified’

Figure 17.1.Finding a Copper instruction.

We've already seen that Copper instructions consist of two 16 bit
words. What we need now is a loop which can skip through a
hardware Copperlist until it finds the appropriate instruction. This
sort of beloved hacker’s loop does the trick perfectly well:

view_p=ViewAddress();
copperlist_reference_p=view_p->LOFCprList->start;

while ((*copperlist_reference_p)!=0x00e0) copperlist_ref-
erence_p+=2;

copperlist_reference_p++; /* move to second word in that
first O0x00e0 instruction */

The terminal increment takes us to the second word of the first
bitplane oriented Copperlist instruction. Don’t worry if it all seems
like magic at the moment... the code will make more sense when
you examine it in the context of the demo. The important thing is
the effect — this loop enables us to find out whereabouts in the
Copperlist Intuition has placed those bitplane address values.
Knowing this makes the scrolling problem much easier to tackle:

Mastering Amiga Programming Secrets
e T S s S RS AT i s i T T e S e T e

The Scroll Routine

Once the Copper instructions to be modified have been found the
rest of the vertical scroll routine is actually quite straightforward
although there are one or two details that have to be taken into
account. Poking the View structure’s hardware Copperlists can,
display-wise, be a bit dangerous because these lists are used both
by Intuition and by the display hardware (ie the Copper). Worse
than that each 32 bit bitplane pointer is stored as separate high and
low words and if Copperlists are poked during the time that
bitplane pointer values are being read display glitches can occur.

So, when do these bitplane pointers get used? Well, during the
vertical blanking interrupt interval the Amiga is doing a lot of
housekeeping work. This includes setting up the Copper registers
ready to display the next frame. This happens at the start of the
vertical blanking gap and the result, most of the time, is that the
Copper is re-executing a list that already exists. If however you
alter the display, by say pulling down one screen to expose another,
then Intuition has to remake the Copperlists of the viewports
associated with those screens (to produce an updated view). If
incidentally we were scrolling one of the screens this list remaking
and installation would play havoc with that display because our
poked Copperlist would be re-written by Intuition. Needless to say
this is something to watch for and it is just because of such
| limitations that Commodore do not actively encourage such tricks
i in an Intuition environment.

Now as far as glitches during bitplane pointer poking is concerned
| it might be thought then that, if we disabled the interrupt system
_} by making a call to the Exec Disable() routine before making the
! changes that we could prevent the system from installing a
modified list before the relevant changes had been made. Listing
17.1 shows some first attempt pseudo-code that attempts to
describe this sort of technique:

/*Listing 17.1: First attempt vertical scrolling pseudo-
code */

scroll:
INITIALISE COPY OF BIT PLANE POINTERS
FOR EACH SCREEN LINE
make a copy of the Copperlist pointer
FOR EACH PLANE
calculate new bitplane address
1 split address into high and low parts
i NEXT PLANE
disable() - safety precaution whilst playing with Copperlist?
FOR EACH PLANE

Scrolling and Intuition
R e TN R R TR R P JIE)

poke high and low values into Copperlist
increment Copperlist pointer for next plane
NEXT PLANE
enable ()
include a time delay to ‘slow things down’ to required
speed?
NEXT SCREEN LINE
return

With the Listing 17.1 approach there’s an inherent flaw present -
because although the Disable() call would prevent pointers to any
new list from being installed it does not stop the Copper reading
the existing Copperlist and, since we are modifying an existing list
not creating a new one Disable() actually has no effect at all. What
we need to do is make sure that any poking operations are done
after the current bitplane pointers have been used and before they
are read again.

The trick is to realise two things: firstly, that the bitplane pointer
instructions occur near the start of the Copperlist. Secondly, that
the system interrupt code that re-starts the Copper for the current
frame occurs early on in the vertical blanking interrupt interval. In
fact by the time the vertical blank interrupt jobs have been carried
out the Copper will already have read and used the bitplane
pointers in the Copperlist! It is therefore quite safe to make pointer
changes whenever the video beam is moving down the screen or is
near the bottom of the display (just prior to the next vertical
blanking period). Since there is a graphics library call, WaitBOVP(),
that allows a program to wait until the display beam is at the
bottom of a viewport I've opted for the scroll routine arrangement
shown in listing 17.2:

/*Listing 17.2: The final vertical scrolling pseudo-code

*/

scroll:

INITIALISE COPY OF BIT PLANE POINTERS

FOR EACH SCREEN LINE

make a copy of the Copperlist pointer

FOR EACH PLANE

calculate new bitplane address
split address into high and low parts

NEXT PLANE

wait till beam is near bottom of screen and then...

FOR EACH PLANE

poke high and low values into Copperlist

Mastering Amiga Programming Secrets
[EEte s i s e s e e e s i e

increment Copperlist pointer for next plane
NEXT PLANE
include a time delay to 'slow things down' to required speed
NEXT SCREEN LINE
return

Some Example Code

What do these scroll routines look like in C? Well, let’s look at the
main components of a ScrollUpwards() routine. Having searched the
Intuition View’s hardware Copperlist and located the bitplane
pointers we need to make a copy of the values. Rather than do this
from the Copperlist though - it is easier to copy the duplicate set of
values stored in the screen’s BitMap structure like this:

for (j=0;j<bitmap_p->Depth;j++)
bitplanes_copy[j]=(ULONG)(*bitmap_p).Planes[j];
During the updating operations we have to split these bitplane
pointers into their respective high and low words because that’s -
how they are stored in the Copperlist. I use a couple of arrays

called low[] and high[] to store the separated values coupled with
this sort of masking and shifting code:
low[j]=((ULONG)bitplanes_copy[j])&OxFFFF;
high[j]=((ULONG)bitplanes_copy[j])>>16;
The Bitmap structure tells us how many screenlines are involved
and the width of the screen in bytes so, having copied the bitplane
pointers, we use a twin loop to perform a bitplane pointer addition
for each visible line of the screen (so scrolling it completely out of
the display). Note that we need to keep a copy of the first word

being changed because this will be incremented as each bitplane is
dealt with:

/*Listing 17.3: A twin loop for adjusting the bitplane
pointers in a Copperlist*/

for(k=0;k<bitmap_p->Rows;k++)

{

copperlist_p=copperlist_reference_p;

for (j=0;j<bitmap_p->Depth;j++)
{
bitplanes_copy[j]+=bitmap_p->BytesPerRow;
low[j]=((ULONG)bitplanes_copy|[j])&OxFFFF;
high[j]=((ULONG)bitplanes_copy[j])>>16;
}

WaitBOVP(&screen_p->ViewPort);

for (j=0;j<bitmap_p->Depth;j++)

Scrolling and Intuition
R R S Y P L L L R

{
*copperlist_p=high[j];copperlist_p+=2;
*copperlist_p=low[j]; copperlist_p+=2;
}

}

It’'s quite easy to package these ideas up in easy to use fashion by
writing a ScrollUpwards() routine that just takes a screen pointer as
a parameter. Inside the routine we search the Intuition View
hardware Copperlist as previously explained. The location of the
screen’s BitMap structure is also needed but this is easily obtained
like this:

bitmap_p=&screen_p->BitMap;

By adding the various sections of code discussed together we end
up with the routine shown in listing 17.4. I've not incidentally
included any time delays in these examples routines but this could
be easily added as part of the end of the outer k loop:

/*Listing 17.4: The completed ScrollUpwards() scrolling
routine*/

void ScrollUpwards(struct Screen *screen_p)
{
ULONG bitplanes_copy[8];

UWORD low[8], high[8], *copperlist_reference_p, *cop-
perlist_p;

WORD j, k;

struct View *view p;

struct BitMap *bitmap_p;

view_p=ViewAddress();

bitmap_p=8&screen_p->BitMap;
copperlist_reference_p=view_p->LOFCprList->start;

while ((*copperlist_reference_p) !=0x00e0) copperlist_ref-
erence_p+=2;

copperlist_reference_p++;
for (j=0;j<bitmap_p->Depth;j++)
bitplanes_copy[j]=(ULONG) (*bitmap_p).Planes[j];
for(k=0;k<bitmap_p->Rows;k++)
{
copperlist_p=copperlist_reference_p;
for (j=0;j<bitmap_p->Depth;j++)
{
bitplanes_copy[j]+=bitmap_p->BytesPerRow;

270

Mastering Amiga Programming Secrets

low[j]=((ULONG)bitplanes_copy[j])&0xFFFF;

high[j]=((ULONG)bitplanes_copy[j])>>16;
}

WaitBOVP(&screen_p->ViewPort);

for (j=0;j<bitmap_p->Depth;j++)
{
*copperlist_p=high[j];copperlist_p+=2;
*copperlist_p=low[j]; copperlist_p+=2;

}

}

The Downward Scroll

Downward scrolling is done in an almost identical fashion except
that we set the bitplane pointers to their topmost values and then
successively reduce them as the scroll proceeds. That said all that .
remains to finish this chapter is the code for getting a screen back
to its starting position and this follows in listing 17.5:

/*Listing 17.5: An equivalent downward scrolling routine*?
void ScrollDownwards(struct Screen *screen_p)

{

ULONG bitplanes_copy[8];

UWORD low[8], high[8], *copperlist_reference_p, *cop-
perlist_p;

WORD j, k;

struct View *view_p;

struct BitMap *bitmap_p;

view_p=ViewAddress();

bitmap_p=&screen_p->BitMap;
copperlist_reference_p=view_p->LOFCprList->start;

while ((*copperlist_reference_p)!=0x00e0) copperlist_ref-
erence_p+=2;

copperlist_reference_p++;
for (j=0;j<bitmap_p->Depth;j++)
bitplanes_copy[j]=(ULONG)

(*bitmap_p).Planes[j]+bitmap_p->BytesPerRow*bitmap_p-
>Rows;

for(k=0;k<bitmap_p->Rows;k++)
{

copperlist_p=copperlist_reference_p;

Scrolling and Intuition
A 002 S 2 B A DR DS LA A T 3t 1

for (j=0;j<bitmap_p->Depth;j++)
{
bitplanes_copy[j]-=bitmap_p->BytesPerRow;
low[j]=((ULONG)bitplanes_copy[j])&OxFFFF;
high[j]=((ULONG)bitplanes_copy[j])>>16;
}

WaitBOVP(&screen_p->ViewPort);

for (j=0;j<bitmap_p->Depth;j++)
{
*copperlist_p=high[j];copperlist_p+=2;
*copperlist_p=low[j]; copperlist_p+=2;
}

271

272

Mastering Amiga Programming Secrets
e e P S P P T g e W PR)

18:

Boot Code
and the
TrackDisk
Device

This chapter is going to deal with
a subject dear to the hearts of all
self respecting hackers - boot
block code! To understand the
discussions which follow you do
of course need to know a little
about the way data is stored on
disks so this is where our story
will start.

With a conventional floppy,
AmigaDOS provides a physical
basis for storing data by
formatting each side of a floppy
disk into 80 tracks which, if you
could see them, would appear as
concentric circles radiating from
the centre of the disk. Tracks are,
by convention, labelled from zero
and since each pair of upper and
lower tracks is called a cylinder,
the top track O plus bottom track
0 constitutes cylinder 0, top track
1 plus bottom track 1 constitutes
cylinder 1, and so on.

Each track is divided into
sections called sectors and these
can hold 512 bytes (ie 0.5K) of
data. The original Amiga filing
system, now called the Old Filing
System or OFS, used an 11 sector
arrangement and this therefore
provided an overall disk capacity
of 880k since:

273

Mastering Amiga Programming Secrets
5 S D s Y s s s Vs s Vs Vs s s s s Vs T s s BS

2 X 80 x 11 X 512 = 880k
sides tracks sectors bytes disk capacity

Not all of this space is actually available to the user - some areas of
the disk are reserved for storing boot code and holding root
directory information. New Amigas fitted with high density drives
can divide tracks into 22 sectors (which again can each hold 512
bytes of data). This increases the potential disk capacity to 1.76
megabytes and the new Amiga filing systems take advantage of this
when high density disks are being used.

From Release 2 of the operating system there has been a trackdisk
command, called TD_GETGEOMETRY, that allows a program to
determine the characteristics of a given drive. The data is returned
in a structure called DriveGeometry that has this sort of layout:

struct DriveGeometry

{

ULONG dg_Sector_Size; /* in bytes */

ULONG dg_TotalSectors;

ULONG dg_Cylinders;

ULONG dg_CylSectors; /* sectors per cylinder */
ULONG dg_Heads;

ULONG dg_TrackSectors; /* sectors per track */

ULONG dg_BufMemType; /* preferred buffer memory type
*/

UBYTE dg_DeviceType; /* SCSI-2 spec */

UBYTE dg_Flags;

UWORD dg_Reserved;

}s
For our current purposes collecting this data would allow us to
determine the number of sectors on a track and therefore
distinguish between the normal and high density floppies.
Although this would guarantee that we got the correct buffer size
for track reads and writes it is not actually necessary to make this
call when just writing boot sectors.

The Boot Sectors

The space corresponding to disk blocks 0 and 1 (cylinder O sector
0, head 0, and cylinder O sector 1, head 0) on a floppy is reserved
by the operating system for bootstrap code. This is the boot
program that gets your Amiga up and running when booting from a
floppy. When you use the AmigaDOS Install command this writes
the code into the first block (block 0) on the disk. Relative to the 2 x
512, ie 1024 bytes, available in the two boot sectors the bootstrap
code itself is tiny and even though with the current Amigas the

code has grown a bit in size it still occupies less that 24 long words
(actually 94 bytes). If you look at the sector data of block 0 you’ll
see that the sector starts with these 24 long words:

444F5300 E33DOE73 00000370 43FAQ03E 70254EAE FDD84A80 670C2240 08E90006
00224EAE FE6243FA 00184EAE FFAO4A80 670A2040 20680016 70004E75 70FF4E75
646F732E 6C696272 61727900 65787061 G6E73696F 6E2E6C69 62726172 79000000
What do they mean? Well, by taking the above numbers and seeing

what 680x0 microprocessor instructions or ASCII data they
represent it is possible to sketch out a general plan that, written in

Boot Code and the Trackdisk Device
1

assembly language, looks like the code shown in listing 18.1:

/*Listing 18.1: A partial Amiga Boot Code Disassembly- Exec library

base already in a6*/

FFFFFFAO _LVOFindResident EQU

FFFFFDD8 _LVOOpenLibrary
FFFFFE62 _LVOCloselLibrary
444F5300 dc.1
E3390E73 dc.1
00000370 dc.1
43FA003E lea
7025 moveq
4EAEFDD8 jsr
4A80 tst.1
670C beq.s
2240 movea.l
08E900060022 bset
4EAEFE62 jsr
43FA0018 no_exp lea
4EAEFFAO jsr
4A80 tst.1
670A beq.s
2040 movea.l
20680016 movea.l
7000 moveq
4E75

70FF set_error moveq
4E75 rts

-$0060
EQU -$0228
EQU -$019E
$444F5300
$E33DOE73
$00000370
expname(pc) ,al

#37,d0

_LVOOpenLibrary (a6)

do
no_exp
do,a1
#6,$22(a1)

DOS
checksum
root block of disk

expansion library
name

minimum version

sets some flag
value

_LVOCloseLibrary(a6)

dosname (pc) ,af

_LVOFindResident (a6)

do
set_error
d0,a0
$16(a0) ,a0

#300,d0
rts
#$Ff,do

dos library name

dos resident tag

loads some value
into a0

success

failed - sign
extended

275

Mastering Amiga Programming Secrets
e i o T Ny G e e e FUT]

646F732E6C69627261727900

dosname dc.b ‘dos.library’',0
657870616E73696F6E2EE6C696272617279000000
expname dc.b 'expansion.library',0

What the code does is not particularly important for our purposes.
The key thing is that normally the rest of the data present in sector
0, and the complete block of data in sector 1 are normally set to all
zero values. What this chapter is going to do is tell you a little
about how you modify the code to create so called custom boot
blocks.

Opening The Trackdisk Device

The Amiga’s trackdisk device provides the easiest way to write
bootblock data to a disk and like other Amiga devices there’s a
certain amount of setting up operations to do before the device can
be used. Three steps are needed: firstly, you need to create a
message port by calling CreatePort() or the equivalent Exec
function. Secondly, you need to create an I/0O request structure
(note here that because some trackdisk commands need an IOExtTD
sized request rather than a standard one most programmers set up
an [IOExtTD for all trackdisk device communications). Lastly, you do
an OpenDevice() call to open the trackdisk device. As you should
expect by now I'll be using my stack based allocation method for
the setting up operations and will be setting the flags field to zero
when opening the device which is right for 3.5" drives (it’s unit 0,
the internal 3.5" drive that we shall be interested in). The system
calls being used were outlined in chapter 10 when the serial device
was discussed so please refer to that chapter for details of the
various functions.

With only three things needing to be done the allocation action list
is very straightforward:

UBYTE (*action_list[])() = {
CreateTDReplyPort,
CreateTDRequestBlock,
OpenTDDevice,
};
and resource allocation follows the usual approach of either
returning an error value to the main setting up loop or pushing a

pointer to the successfully opened resource onto the deallocation
stack as in listing 18.2 below:

Listing 18.3 is the source for a preliminary program that does
nothing other than opening the required resources and closing
them down again. If you compare the operations to those in chapter
10 you'll see that there is a lot of common ground between the
various device setting up steps in the two chapters. Some labels
change and so on but the basic steps, and the code needed, remains
essentially the same.

Boot Code and the Trackdisk Device
|

/*Listing 18.2: These sort of allocation arrangements
should be very familiar by now!*/
if((g_td_reply_port_p=CreatePort(TD_NAME,0))==NULL)
error_number=STARTUP_ERROR;
else {
g_function=DeleteTDReplyPort;
PushStack(g_resource_stack_p,g_function);

}

/* -ttt -ttt ittt */

/*Listing 18.3: Code for setting up the trackdisk device,
request block and reply port */

/* Module name: writeboot.c - preliminary WriteBoot pro-
gram code

/* */
#define ALLOCATE_GLOBALS
#include "general.h”
#define ACTION_COUNT 3
UBYTE (*action_list([])() = {
CreateTDReplyPort,

CreateTDRequestBlock,
OpenTDDevice,
}s
main(int argc, char *argv[])
{
UBYTE error_number=NO_ERROR;
printf (SIGN_ON);

if(!(g_resource_stack_p=CreateStack(void *))) error_num-
ber=NO_STACK;

else ({
/* attempt to allocate resources... */
if(!AllocateResource (ACTION_COUNT,action_list))

{
/* DO SOMETHING */

277

Mastering Amiga Programming Secrets
e N e S O N e e N B T e e

}

while(!PopStack(g_resource_stack_p,g_function))
g_function();

KillStack(g_resource_stack_p);
}
return(0);
} /* Logical end of program */

/*
UBYTE AllocateResource(UBYTE count,UBYTE (*1list[])())
{
UBYTE i, error_number;
for (i=0j;i<count;i++)
{
if(error_number=1list[i]())
{
printf("%s %d\n",CANNOT_ALLOCATE,i);
i=count; /* force exit from loop */
}
}

return(error_number) ;

}
/t

UBYTE CreateTDReplyPort(void)
{
UBYTE error_number=NO_ERROR;
if((g_td_reply_port_p=CreatePort(TD_NAME,0))==NULL)
error_number=STARTUP_ERROR;
else {
g_function=DeleteTDReplyPort;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

}
/*

void DeleteTDReplyPort(void)

{
DeletePort(g_td_reply_port_p);

Boot Code and the Trackdisk Device
.|

}

/* */
UBYTE CreateTDRequestBlock()

{

UBYTE error_number=NO_ERROR;

g_td_request_p=(struct IOExtTD *)
CreateExtIO(g_td_reply_port_p,sizeof(struct IOExtTD));

if (g_td_request_p==NULL) error_number=STARTUP_ERROR;

else {

g_function=DeleteTDRequestBlock;
PushStack(g_resource_stack_p,g_function);

}

return(error_number) ;

}

/* */
void DeleteTDRequestBlock()

{
DeleteExtIO((struct IORequest *)g_td_request_p);

}

/* xf
UBYTE OpenTDDevice()

{

UBYTE error_number=NO_ERROR;

if ((OpenDevice(TD_NAME,O, (struct IORequest
*)g_td_request_p,0))!=NULL) error_number=STARTUP_ERROR;

else {

g_function=CloseTDDevice;
PushStack(g_resource_stack_p,g_function);

}
return(error_number) ;
}
/* */
void CloseTDDevice()
{
CloseDevice((struct IORequest *)g_td_request_p);
}

/* */

Mastering Amiga Programming Secrets
N i g0 8 St N A S R Sl NG5 T LB P =

Reading From The Trackdisk Device

You read from the trackdisk device using a CMD_READ command
with the number of bytes to be read in io_Length, the address of the
read buffer in io_Data, and the track you want to read specified as
the io_Offset field. You don’t provide track numbers - the offset is
calculated by multiplying the number of the track you wish to read
by the number of bytes in a track (nowadays usually obtained by
asking the trackdisk device to supply the appropriate drive
geometry info).

Writing To The Trackdisk Device

Same approach as before - you write to the device using a
CMD_WRITE command with the number of bytes to be written in
io_Length, the address of the write buffer in io_Data, and the track
you want to write specified as the io_Offset field. Again you don’t
provide track numbers but calculate the offset by multiplying the
number of the track you wish to read by the number of bytes in a
track.

Getting the Drive Geometry Data

It’s easy! First, we set up some space for the DriveGeometry
structrure like this:

struct DriveGeometry drive_geometry={0};

then we place the address of the structure into the data field of the
I/0 request and set the command field to TD_GETGEOMETRY:

g_td_request_p->iotd_Req.io_Data=&drive_geometry;

g_td_request_p->iotd_Req.io_Command=TD_GETGEOMETRY;
and then we perform a device DolO() function call:

DoIO((struct IORequest *)g_td_request_p);

The trackdisk device fills in all the fields and all we have to do is
read them. The fragment shown in listing 18.4 would, if inserted
into the previous program, calculate the size of a track:

/*Listing 18.4: Fragment showing the modifications needed
to deduce the track size*/

main(int argc, char *argv[])

{

UBYTE error_number=NO_ERROR;

ULONG sector_size,sector_count, buffer_size;
printf(SIGN_ON);

if(l(g_resource_stack_p=CreateStack(void *))) error_num-
ber=NO_STACK;

else ({
/* attempt to allocate resources... */

Boot Code and the Trackdisk Device
|

if (1AllocateResource(ACTION_COUNT,action_list))

{

g_td_request_p-
>iotd_Req.io_Data=&drive_geometry;

g_td_request_p-
>iotd_Req.io_Command=TD_GETGEOMETRY;

DoIO((struct IORequest *)g_td_request_p);
sector_size=drive_geometry.dg_SectorSize;
sector_count=drive_geometry.dg_TrackSectors;
buffer_size=sector_size*sector_count;
printf("Track size %d\n",buffer_size);

}

while(!PopStack(g_resource_stack_p,g_function))
g_function();

KillStack(g_resource_stack_p);

}
return(0);
} /* Logical end of program */

Custom Boot Code

The first twelve bytes in the bootblock are important for a number
of reasons, mainly though that if you get them wrong your boot
sectors will not be recognised. Floppy disks have a header that
consist of a DOS string, a checksum (that I'll discuss later), and a
value which identifies the disk’s root block:

dc.1 $444F5300 DOS
dc.1 $00000000 checksum space
dc.1 $000000370 root block location

Following this comes the boot code that performs a variety of
system magic that will not concern us. The bootblock code has
changed with recent releases of the Amiga’s O/S but the bit we are
interested in is the section I've marked in listing 18.5:

/*Listing 18.5: This shows the code area related to the
end of a successful boot!*/

43FA0018 no_exp lea dosname(pc),al dos library name
4EAEFFA0 jsr _LVOFindResident (a6)
4A80 tst.1l do
670A beq.s set_error

<control passes through here if the boot process is
successful>
2040 movea.l do,a0 dos resident tag

281

Mastering Amiga Programming Secrets
P R o L S S U e Ry T U T

20680016 movea.l $16(a0) ,a0 loads some value into
a0

7000 moveq #$00,d0 success
<control passes through here if the boot process is

successful>

4E75 rts

70FF set_error moveq #$ff,do failed - sign

extended
4E75 rts

To modify the bootblock code all we have to do is tack on some
additional code in the area shown. Actually it's not that easy for two
reasons: firstly, the code has to be written so that it is truly
relocatable (this is because of the way the code is placed in memory
during the booting process). Secondly, if you modify the code you
have to calculate a new checksum because the O/S boot routines
check to see that this is valid before executing the code.

The checksum is called a longword additive carry wraparound of
Sffffffff. Sounds good but all this means is that you start with the
first longword of the two sectors and add it to the next longword.
You then look at the sum produced and if the result has overflowed
(ie produced a carry) then you add an extra one to the result. You
then continue to loop through the boot sector contents making
exactly the same additions, overflow tests, and adjustment until
you've examined all 256 longwords (256 words = 1024 bytes = 2
sectors). Having done that you just invert all the bits in the final
sum to produce a checksum for storing in the bootblock. Listing
18.6 shows the sort of C code loop needed to calculate a bootblock
checksum for bootcode held in a ULONG array:

/*Listing 18.6 Bootblock checksums the easy way!*/
for(1=0;i<256;i++)
{
if (sum+bootcode[i]>=sum)
sum+=bootcode[i];
else sum=sum+bootcode[i]+1;

}

bootcode[1]=~sum;

Producing the Code

Like many other coders I initially disassembled the standard boot
code more for fun than anything else but, once an assembly
language framework was available, it was not too difficult to see
how additions could be made. Not knowing which registers were
important as the boot code exits I've always made a point of

Boot Code and the Trackdisk Device

—

how additions could be made. Not knowing which registers were
important as the boot code exits I've always made a point of
preserving and restoring all registers and in fact, for simplicity, I
just push all registers except a7 onto the stack like this:

movem.1l d0-d7/a0-a6,-(a7) preserve registers

I've opted for a very simple piece of additional code a loop that
holds up the completion of the boot process until the user presses
the ESCape key. This code, shown in listing 18.7, is similar to that
used in the Chapter Seven examples and if we put all the fragments
previously discussed together the result is the assembly language
program shown in listing 18.8:

/*Listing 18.7 Waiting for the ESCape key to be pressed*/
lea CUSTOM, a5

loop: move.b vhposr(as),d0 get scanline
cmp.b #$ff,dO0 line $ff?
bne.s loop

; Could do something here until ESCape key is pressed!

move.b $bfec01,d0 read keyboard

eor.b #3ff,do0 decode byte

ror.b #1,d0

cmp.b #$45,d0 ESCape key?

bne.s loop keep going
movem.1l (a7)+,d0-d7/a0-a6 restore registers

/*Listing 18.8: The finished bootblock code*/
;5 Custom Bootcode example
CUSTOM EQU $DFFO000

NULL EQU 0

vhposr EQU $6

_LVOFindResident EQU -96

_LVOOpenLibrary EQU -552

_LVOCloseLibrary EQU -414
dc.1 $444F5300 DOS
dc.1 $00000000 checksum space
dc.1 $000000370 root block location
lea expname(pc) ,al expansion library

name

moveq #37,d0 minimum version
jsr _LVOOpenLibrary(a6)

Mastering Amiga Programming Secrets
(T e e S s Lo M e D M IR CRRT

tst.1 do
beq.s no_exp

movea.l do, a1

bset #6,822(al) sets some flag value
jsr _LVOCloseLibrary(a6)
no_exp lea dosname(pc),al dos library name
jsr _LVOFindResident (a6)
tst.1 do
beq.s set_error

movea.l do,a0

; this is where our new code goes:

movem.1l d0-d7/a0-a6,-(a7) preserve registers
lea CUSTOM, a5
loop: move.b vhposr(a5),do0 get scanline
cmp.b #3ff,d0 line $ff?
bne.s loop
3 Could do something here until ESCape key is pressed!
move.b $bfec01,d0 read keyboard
eor.b #3$ff,d0 decode byte
ror.b #1,d0
cmp.b #$45,d0 ESCape key?
bne.s loop keep going
movem.1l (a7)+,d0-d7/a0-a6 restore registers

; -.. end of new code section!

movea.l $16(a0),a0 loads rt_Init into a0
moveq #$00,d0
rts
set_error moveq #$ff,do0 sign extends
rts

dosname dc.b ‘'dos'
dc.b '.library',NULL
expname dc.b 'expansion'’
dc.b '.library',NULL
Now we can assemble this, but you are probably wondering how we
get the code into the bootblock sectors after that. Well there are a
variety of hacker tools available for these types of jobs and

diassemblers like the Puzzle Factory’s ReSource package are
absolutely brilliant for this type of work. The standard approach

Boot Code and the Trackdisk Device
|

listing to produce an array of numbers representing the
instructions. Listing 18.9 shows the listing obtained with HiSoft's
Devpac package and listing 18.10 shows the C array that I built
using copy/paste editing operations along with an array that
represents the original bootblock code:

/*Listing 18.10 - Original and modified bootblock code in C-style
hex format*/

HiSoft GenAm 680x0 Macro Assembler v3.04 Jul 1 1994 Page 1

Bootcode.s

1 00.00000000 ;Custom Bootcode example

2 00.00000000

3 =00DFF000 CUSTOM EQU $DFF000
4 00.00000000

5 =00000000 NULL EQU 0
6 00.00000000

7 =00000006 vhposr EQU $6
8 00.00000000

9 =FFFFFFAO _LVOFindResident EQU -96
10 00.00000000

11 =FFFFFDD8 _LVOOpenLibrary EQU -552
12 00.00000000

13 =FFFFFE62 _LVOCloseLibrary EQU -414

14 00.00000000
15 00.00000000

16 00.00000000 444F5300 dc.1 $444F5300
DOS

17 00.00000004

18 00.00000004 00000000 dc.1 $00000000

checksum space
19 00.00000008

20 00.00000008 00000370 dc.1 $000000370
root block location

21 00.0000000C

22 00.0000000C 43FA0068 lea expname(pc),al
expansion library name

23 00.00000010

24 00.00000010 7025 moveq #37,d0
minimum version

25 00.00000012

285

Mastering Amiga Programming Secrets
[Epasano s cir LR b ST s D T s G b S s i RS |

26
27
28
29
30
31
32
33
34

00.
00.
00.
00.
00.
00.
00.
00.
00.

00000012 4EAEFDD8
00000016

00000016 4A80
00000018

00000018 670C
0000001A
0000001A 2240
0000001C

sets some flag value
35 00.00000022
36 00.00000022 4EAEFE62
37 00.00000026

38 00.00000026 43FA0042
dos library name

39 00.0000002A

40 00.0000002A 4EAEFFAOQ
_LVOFindResident (a6)

41
42
43
44
45
46
47
48
49
50
51

00.

00

00.
00.
00.
00.
00.
00.
00.
00.
00.

preserve

52
53
54
55

00
00
00
00

0000002E
.0000002E 4A80
00000030
00000030 6734
00000032
00000032 2040
00000034
00000034
00000034
00000034

00000034 48E7FFFE
registers

.00000038

0000001C 08ES00060022

no_exp

jsr

tst.1 do

beq.s

movea.l dO,ai

bset #6,922(a1)

jsr_LVOCloselLibrary(a6)

lea dosname(pc) ,ai
jsr

tst.1 do
beq.s set_error

movea.l dO,a0

; this is where our new code goes...

.00000038 4BF900DFFO000

.0000003E
.0000003E 102D0006

get scanline
56 00.00000042

57 00.00000042 BO3COOFF
line $ff?

loop:

movem.l dO-d7/a0-a6,-(a7)

lea CUSTOM, a5

move.b vhposr(a5),d0

cmp.b #$ff,d0

Boot Code and the Trackdisk Device
N R e e Y e e S e S o o o P g |

HiSoft GenAm 680x0 Macro Assembler v3.04 Jul 1 1994 Page 2
Bootcode.s

58 00.00000046

59 00.00000046 66F6 bne.s loop
60 00.00000048
61 00.00000048 H Could do something here

until ESCape key is pressed!
62 00.00000048

63 00.00000048 103900BFECO1 move.b $bfec01,d0
read keyboard

64 00.0000004E

65 00.0000004E OAOOOOFF eor.b #$ff,do0
decode byte

66 00.00000052

67 00.00000052 E218 ror.b #1,d0
68 00.00000054
69 00.00000054 B0O3C0045 cmp.b #%45,d0

ESCape key?
70 00.00000058

71 00.00000058 66E4 bne.s loop
keep going

72 00.0000005A
73 00.0000005A
74 00.0000005A

75 00.0000005A 4CDF7FFF movem.l (a7)+,d0-d7/a0-a6
restore registers

76 00.0000005E
77 00.0000005E - end of new code section!
78 00.0000005E
79 00.0000005E

80 00.0000005E 20680016 movea.l $16(a0),a0
loads rt_Init into a0

81 00.00000062

82 00.00000062 7000 moveq #%00,d0
83 00.00000064
84 00.00000064 4E75 rts

85 00.00000066

Warning: sign extended operand at line 86 in file Bootcode.s

288

Mastering Amiga Programming Secrets
froc i s T e e e e AR e 2 S e

85 00.00000066
Warning: sign extended operand at line 86 in file Bootcode.s

86 00.00000066 70FF set_error moveq #$ff,d0
sign extends

87 00.00000068

88 00.00000068 4E75 rts

89 00.0000006A

90 00.0000006A 646F73 dosname dc.b ‘dos'

91 00.0000006D 2E6C69627261727900 dc.b '.library',NULL

92 00.00000076

93 00.00000076 657870616E73696F6E expname dc.b
'expansion’

94 00.0000007F 2E6C69627261727900 dc.b '.library',NULL

GLOBAL SYMBOLS
0ODFF000 A CUSTOM
00000000 A NULL
FFFFFE62 A _LVOCloseLibrary
FFFFFFAO A _LVOFindResident
FFFFFDD8 A _LVOOpenLibrary
00000006 A vhposr
MODULE BOOTCODE.S

0000006A O00.R dosname
00000076 00.R expname
0000003E 00.R 1loop
00000026 00.R no_exp
00000066 O00.R set_error
Listing 18.9 Devpac listing showing object code details:
ULONG orig_bootcode[256] = {
0x444F5300,0x00000000,0x00000370,0x43FAQ03E,
0x70254EAE ,0xFDD84A80,0x670C2240,0x08E90006 ,
0x00224EAE ,0xFE6243FA,0x00184EAE ,0xFFAO4A80,
0x670A2040,0x20680016 ,0x70004E 75 ,0x70FF4E75,
0x646F732E ,0x6€696272 ,0x61727900,0x65787061 ,
Ox6E73696F ,0x6E2E6C69 ,0x62726172 ,0x79000000
}s

Boot Code and the Trackdisk Device
|

0x444F5300 ,0x00000000 ,0x00000370 ,0x43FA0068,
0x70254EAE ,0xFDD84A80 ,0x670C2240 ,0x08E90006
0x00224EAE ,0xFE6243FA ,0x00424EAE , 0XFFAO4ASO0,
0x67342040,0x48E7FFFE ,0x4BF900DF ,0xF0001020,
0x0006B03C ,0x00F F66F6 ,0x103900BF ,0XECO10A00,
0XxO0O0FFE218,0xB03C0045 ,0x66E44CDF ,0x7FFF2068,
0x00167000,0x4E7570FF , 0x4E75646F ,0x732E6C69
0x62726172,0x79006578 ,0x70616E73 , 0X696F 6E2E
0x6C696272 ,0x61727900

}s

Putting It All Together

All that remains is to take the bootcode array and couple it to a
program that opens the trackdisk device and writes the data into
the first two sectors of track zero. Listing 18.11 is just such a
program and is typical of the type that hackers will knock up to
store bootblock code (I've left both the original and modified
bootblock code arrays in the source just for comparison purposes).
Most of the program will be familiar from the preliminary code
given in listing 18.3 and all that has been added is the checksum
fragment mentioned earlier and functions to perform trackdisk
CMD_WRITE and TD_MOTOR commands both of which are easy to
understand from the code. (The latter command is used with a zero
length value to turn the motor off - and it is the programmers
responsibility to do this).

The modified code doesn’t actually do a lot - if you boot up with a
disk that’s had its boot sectors re-written by this program you find
that the screen stays blank, and the drive light stays on, until you
press the ESCape key (at which point the boot process continues
normally). It will incidentally work on machines running Workbench
1.3 and upwards. Not exactly stunning effects-wise but it is the
simplest example that | could come up with that dealt with all the
main issues. If incidentally you use the original bootblock array
then you’'ll write a normal bootblock - in other words the program
becomes equivalent to the Amiga system Install command!

289

290

Mastering Amiga Programming Secrets
L T e o g o G 9 e

main issues. If incidentally you use the original bootblock array
then you’ll write a normal bootblock - in other words the program
becomes equivalent to the Amiga system Install command!

/‘l M S */

/*Listing 18.11 The final version of the bootblock re-
writing program*/

/* Module name: writeboot.c - contains the WriteBoot pro-
.gram code

I* - %/
#define ALLOCATE_GLOBALS
#include "general.h®

struct DriveGeometry drive_geometry={0};
#define ACTION_COUNT 3
UBYTE (*action_list[])() = {
CreateTDReplyPort,
CreateTDRequestBlock,
OpenTDDevice
}s
ULONG orig_bootcode[256] = ({
0x444F5300,0x00000000,0x00000370,0x43FAQO03E,
0x70254EAE , 0xFDD84A80,0x670C2240,0x08E90006,
0x00224EAE ,OxFE6243FA,0x00184EAE ,0xFFAO4A80,
0x670A2040,0x20680016,0x70004E75 ,0x70FF4E75,
0Ox646F732E,0x6C696272,0x61727900,0x65787061 ,
Ox6E73696F ,0x6E2E6C69,0x62726172,0x79000000
};
ULONG bootcode[256] = {
0x444F5300,0x00000000,0x00000370,0x43FA0068,
Ox70254EAE,0xFDD84A80,0x670C2240,0x08E90006,
0x00224EAE,O0xFE6243FA,0x00424EAE ,0xFFAO4A80,
0x67342040,0x48E7FFFE,0x4BF900DF,0xF000102D,
0x0006B03C,0x00FF66F6,0x103900BF,0xEC010A00,
OxO00FFE218,0xB03C0045,0x66E44CDF ,0x7FFF2068,
0x00167000,0x4E7570FF ,0x4E75646F ,0x732E6C69,
0x62726172,0x79006578,0x70616E73 ,0x696F6E 2E ,
0x6€696272,0x61727900
}s

main(int argc, char *argv[])

Boot Code and the Trackdisk Device
|

ULONG sum=0;
printf (SIGN_ON);

if(l(g_resource_stack_p=CreateStack(void *))) error_num-
ber=NO_STACK;

else ({
/* attempt to allocate resources... */
if(!AllocateResource (ACTION_COUNT,action_list))
{
for(i=0;1i<256;i++)
{
if (sum+bootcode[i]>=sum)
sum+=bootcode[i];
else sum=sum+bootcode[i]+1;
}
bootcode[1]=~sum;
printf(“checksum = %x\n”,bootcode[1]);
if(!(error_number=WriteBootSectors()))
printf(FUNCTION_COMPLETE);
else printf(ERROR_MESSAGE) ;
}

while(!PopStack(g_resource_stack_p,g _function))
g_function();

KillStack(g_resource_stack_p);

}
return(0);
} /* Logical end of program */
/* */
UBYTE WriteBootSectors(void)
{
UBYTE error_number=NO_ERROR;
g_td_request_p->iotd_Req.io_Length=1024;

g_td_request_p->iotd_Req.io_Data=&bootcode;
g_td_request_p->iotd_Req.io_Offset=0;
g_td_request_p->iotd_Req.io_Command=CMD_WRITE;

if(DoIO((struct IORequest *)g_td_request_p)) error_num-
ber=TRACKDISK_ERROR;

else {
g_td_request_p->iotd_Req.io_Command=CMD_UPDATE;

291

Mastering Amiga Programming Secrets
R e e S e (e e S e S R T e e

if(DoIO((struct IORequest *)g_td_request_p))
error_number=TRACKDISK_ERROR;
}
MotorOff();

return(error_number);

}

/*
void MotorOff(void)

{

g_td_request_p->iotd_Req.io_Length=0;
g_td_request_p->iotd_Req.io_Command=TD_MOTOR;
DoIO((struct IORequest *)g_td_request_p);

}
/t

UBYTE AllocateResource(UBYTE count,UBYTE (*list[])())
{

UBYTE i, error_number;
for (i=0j;i<count;i++)
{
if(error_number=1ist[i]())
{

i=count; /* force exit from loop */

}

}

return(error_number);

}
/i

UBYTE CreateTDReplyPort(void)
{
UBYTE error_number=NO_ERROR;
if((g_td_reply_port_p=CreatePort(TD_NAME,O))==NULL)
error_number=STARTUP_ERROR;
else {
g_function=DeleteTDReplyPort;
PushStack(g_resource_stack_p,g_function);

}

*

*/

*/

Boot Code and the Trackdisk Device
.|

return(error_number);

}

/* */
void DeleteTDReplyPort(void)

{
DeletePort(g_td_reply_port_p);

}

/* */
UBYTE CreateTDRequestBlock()

{

UBYTE error_number=NO_ERROR;

g_td_request_p=(struct IOExtTD *)

CreateExtIO(g_td_reply_port_p,sizeof(struct IOExtTD));
if (g_td_request_p==NULL) error_number=STARTUP_ERROR;
else {
g_function=DeleteTDRequestBlock;
PushStack(g_resource_stack_p,g_function);

}

return(error_number);

}

/* */
void DeleteTDRequestBlock()

{
DeleteExtIO((struct IORequest *)g_td_request_p);

}

[*/
UBYTE OpenTDDevice()

{

UBYTE error_number=NO_ERROR;

if((OpenDevice(TD_NAME,O, (struct IORequest
*)g_td_request_p,0))!=NULL) error_number=STARTUP_ERROR;

else {

g_function=CloseTDDevice;
PushStack(g_resource_stack_p,g_function);
}

return(error_number) ;

}

293

294

Mastering Amiga Programming Secrets
st isemr o e S S nes s e e st At i pd S e i

* */
void CloseTDDevice()

{
CloseDevice((struct IORequest *)g_td_request_p);

}
I* */

19:

Some Extra
Programming
Tips and
Tricks

Programming is, to some extent,
still just as much an art as a
science but nowadays there are
plenty of guidelines to help. Over
the years I've written many
thousands of lines of code, on
many different machines and
operating systems and with all
manner of languages. Needless to
say | have, during this time,
learnt quite a bit about what to
do if a piece of newly written
code fails to behave as expected.
In this last chapter | want to both
share some of the tricks I've
learnt and pass on a little of the
coding philosophy I've acquired
along the way.

Before getting into the nitty-gritty
stuff however there are a few
preliminary issues to get out of
the way. To start with it's worth
remembering that program
development involves planning,
coding, testing and debugging
and since the latter two areas can
be the most time consuming
stages of software development
it's worth trying to minimise this
potential overhead right from the
start. You do this by properly
planning your program before
starting to bash out code at the
keyboard. Now in theory a decent
plan, coupled with careful coding,
ought to eliminate program bugs
completely but, as you doubtless
know, it doesn’t. This does not
mean that these pre-coding
design stages are a waste of
effort, far from it - by reducing
the chances of errors in the logic
of the program, those plans will
still greatly reduce both
development troublespots and
the number of debug/test

295

Mastering Amiga Programming Secrets
A A Ty S S e R e el R

problems you encounter. What it cannot possibly do however is
eliminate all of the problems and the fact of the matter is that, no
matter how conscientious a programmer you are, mistakes are
bound to be made.

One of the seemingly less troublesome coding errors that can occur
are syntax errors, ie errors due to the fact that you've written
something which does not conform to the rules of the language.
Such mistakes can be caused by misconceptions about the
language, by dyslexic slips, or by a multitude of other silly things -
such as inserting a semi-colon when you meant to write a colon
(because you didn’t hit the shift key at the right time). You might
even make mistakes due to the programmer’s equivalent of jet lag.
C, for instance, expects array subscripts to be enclosed in square
brackets. If therefore you write array[2] as array(2), as you might
well inadvertently do if you'd spent the last few months
programming in Basic, the compiler would rightly complain.

A lot of programmers regard syntax errors as trivial and qualify
that by suggesting that they are trivial because they are easily
found and corrected. One point which ought to be made loudly and
clearly is that these types of mistakes are not however inherently
harmless! Despite the fact that these slips usually have trivial
origins... finding them could, especially with large programs, be
very time consuming. Programmers rely heavily on their
assemblers, compilers and interpreters to catch such errors and
from experience we know that the well supported software
development tools really will catch 99+% of such errors. In short -
with good commercial development tools a program is unlikely to
get to a runable stage until it is syntactically correct.

Once you are past the syntax error correction stage, and your
program assembles, compiles or otherwise seems to run in some
fashion then you should be home and dry. Unfortunately this isn’t
always so... a program may run to a point and then for no obvious
reason fail to behave as expected, crash or do other unspeakable
things to your system. Although it is at this stage of course that we
enter the realm of debugging proper, careful programmers will have
sought to minimise potential snags well before a program is first
run and the number one rule is this: never get yourself into a
position where it is necessary to check through large amounts of
code!

There are two key elements to follow: firstly, build your programs
using small self contained subroutines or functions that do specific
jobs. If a task looks to be complex then break it up into more
manageable pieces. Secondly, opt for a development approach that
is based on incremental testing. This involves starting with a very
simple version of a program and then developing it by adding small
sections of additional code, assembling, compiling and running the

Some Extra Programming Tips And Tyicks
e e P P B S e e C e

new versions as each new part is added. The idea is of course that
any errors and faults which appear will almost certainly be related
to the most recently added section. How do you run an incomplete
program? One useful idea is to incorporate dummy
subroutines/calls for the parts of the program which are not yet
written. With C do-nothing type function calls can be written:

void DoNothing(void) { /* temporary dummy call */ }
With Basic and ARexx you can use the equivalent of this type of
routine:

DoNothing: RETURN
and with 68000 assembler you might use:

DoNothing:RTS dummy call for development purposes

In practice it is of course usually best if such routines are given
names which correspond to the final routines they’re supposed to
correspond to (this enables the skeleton structure of the program to
be created early on). Remember that these ideas can be applied to
all languages - the ARexx fragment in listing 19.1 for example
shows calls to a variety of unwritten functions whilst listing 19.2
shows the contents of two such routines at an early development
stage:

/*Listing 19.1: Calls to unwritten routines are a big help
during development.*/

do until g_exit_flag
select
when item$='B' then call BuildNewDatabase()
when item$='0' then call OpenExistingDatabase()
when item$='A' then call AddRecord()
when item$='E' then call EditRecord()
when item$='F' then call FindRecord()
when item$='C' then call CloseDatabase()
when item$='Q' then call QuitProgram()
otherwise call Writech(raw_window, INVALID_OPTION)
end
/* */

/*Listing 19.2: Begin coding the easy stuff and use dummy
calls for more involved routines.*/

CloseDatabase:

/* needs code for closing the database */
return

/* */

Mastering Amiga Programming Secrets
S 3 A S S Yl o ¥ e A =i |

QuitProgram:g_exit_flag=TRUE

return

/* */
Calls like these keep the interpreters, compilers and assemblers
happy and allow us to concentrate on the testing (in runable form)
of those sections of the program which have actually been written
to—date. Bear in mind that all of these ideas need to be dictated by
circumstances. It may for instance be necessary for a dummy
routine to return a piece of data in order for the existing part of a
program to work correctly. Similarly it may be necessary to force a
variable to a fixed value (so that you can be sure of the value it
takes). At one stage, whilst coding support routines for a Midi
utility, the routine which extracted delta times from a Midi file had
not been written. Since it was necessary to have some time delay in
order to check the MidiHandler() routine that had been written I
simply inserted a temporary constant value and marked the source
accordingly:

/* do delta-time pause and then transmit... */

SetTimer (0,1000) ;

/* TEMPORARY DEVELOPMENT MEASURE */

current_status=MidiHandler(current_byte, current_status,
source_p, dest_p);

Sometimes you can’t just invent or ignore data items quite so
easily. Your program may, for example, have to scan through a
sequential data file. This does not mean however that your coding
must have progressed to the point where you are able to use every
piece of file data before you start program testing. A useful trick is
to create routines, such as that shown in listing 19.3, that let a
program read but discard any specified amount of file data. You'll
see a similar routine used to discard unused Midi file events in my
MidiPlayer program.

/*Listing 19.3: Routines that safely throw away file data

are extremely useful at times.*/

UBYTE DiscardBytes(ULONG count, FILE *source_p)
{

UBYTE error_number=NO_ERROR;

while(count-)

{

if (fgetc(source_p)==EOF) {error_number=BAD_CHUNK_DATA;
count=0;} /* force exit */

}

return(error_number);

}

Some Extra Programming Tips And Tricks
R R SRR AL LA A 7 S22 o LR L e S S M e)

When It All Goes Wrong

All the things I've discussed so far are aimed at minimising
potential problems so that written code, when tested, works OK.
Needless to say you occasionally get to a point where a particular
piece of code bombs out or fails.

I’'ve found that with all slips that are not immediately obvious,
working solely from a VDU display is usually a mistake. The best
idea is to print out a copy of the routine and then get right away
from your computer - it doesn’t matter whether you go to another
room, the garden, or even the pub (as long as it’'s quiet)! Don’t
guess, just take some time to quietly look through the code, and go
over the basic ideas about what the routine should and should not
do, and check the overall structure of the routine looking carefully
at loops, decisions, initialisation of important variables, use of
system calls, pointer use etc. Most programmers at this stage tend
to convince themselves that their code is OK. The plain fact of the
matter is that if a routine isn’t working properly then there is a
logical reason why and although you can convince yourself that
your code is fine unfortunately the odds are extremely high that it
is not.

It is a well known fact that programmers find it all too easy to miss
their own mistakes - they seem to have psychological blind spots
regarding such errors. Don’t dwell on this too much - just accept
that if you've looked through the appropriate code and decided it’s
OK... then you have hit just such a blind spot.

With incremental development you will normally already have a
very good idea of where the problem lies and at this stage it is most
useful, having assumed that there is an error, to simply look for a
ways of proving that certain sections of code are error free. Often
you'll need to look at particular variable values that are either being
passed to, or used within, the code in question and that means you
need facilities for tracing those values at run time. Languages like
Basic and ARexx offer inbuilt dynamic trace facilities. C compilers,
and even assemblers, nowadays also often provide highly
sophisticated source-level debugging tools which allow
programmers to trace through a program looking at variables and
statements. These tools are fine if you have them but they are not
essential and the well established older trick of adding additional
print statements to the code to display important values, or bring
particular conditions to the attention of the programmer, is usually
just as effective.

C coders might dump values using printf() statements. Assembler
programmers similarly might make temporary use of the printf()
routine available in the amiga.lib library. The idea in all such cases
is that the extra code allows the programmer to systematically trace
program execution through an area of interest.

Mastering Amiga Programming Secrets

—

Helping Yourself

Obviously debugging is made easier if your code is easily readable.
Descriptive variable names help here, as do the use of conventions
which make it easy to identify particular types of variables. One
useful convention is that of naming pointer variables using a _p
suffix. Quite simply it serves as a useful reminder that a pointer
variable is being dealt with and thus helps reduce the likelihood of
inadvertent misuse. A common, and usually fatal, pointer error on
the Amiga involves initialisation, or rather the lack of it. With many
system calls (such as memory allocation functions) the system tells
you that an operation has been unsuccessful by returning a NULL
(zero) pointer. If you do not religiously check such return values
the chances are that your program under particular load or system
conditions will be unreliable. Bear this in mind when someone tells
you that a piece of code, which seems to work fine on your system,
falls over on someone else’s machine.

On the Amiga there are plenty of system variables (eg message
blocks and other system structure pointers) which have to be used
in many different places within a program. Large numbers of
graphics calls require users to identify target rasterports and
viewports using pointer variables. The time taken to pass local
copies of these pointers down though nested function calls is the
last thing you want for graphics work and in such cases globals are
a realistic solution. In short use globals on such occasions - but use
them with caution. Write code which makes it obvious which
variables are global. A useful convention is to prefix all such
variables with the letter g, for example:

struct Screen *g_screen_p;

Now these tricks and conventions certainly help minimise potential
trouble spots in all languages but, as you can imagine, some
languages are inherently easier to work with than others. The
ability to interrupt Basic and ARexx programs, coupled with these
languages inbuilt debugging facilities, is a big help. Other
languages help in other ways and of late C programmers have been
given some major assistance in the form of ANSI C. In the ‘old days’,
ie prior to the development of the ANSI standard, many C problems
were caused by inadvertently misusing function return values and
supplying parameters of an incorrect type. The new style function
declarations and function prototypes have eliminated this problem.
ANSI C's function prototypes are important because they allow the
compiler to check for correct function use. Your compiler is
unlikely to force you to use them (at least yet), but the benefits are
very real so it is best to get into the habit of using them.
Unfortunately, although prototypes may protect you against
function and pointer misuse, plenty of other pitfalls still remain. A
well established C slip, which turns an equality test into a variable
assignment is that of accidentally typing = instead of ==. Such

Some Extra Programming Tips And Tricks
D S SR S AN o R e b S Y s s A L e R e s v

mistakes can cause loops which should terminate at some stage:
to execute forever!

68000 assembler coders have a relatively rougher time when it
comes to testing and debugging than anyone else. Listings are both
larger and more detailed, and major errors can be caused by slips
that are far harder to see at first glance. Even obvious errors, like
getting the boundary and exit conditions of loops wrong, can slip
through the net. This loop, for example, executes eleven times:

MOVE.B #10, dO
Loop: JSR DoSomething
DBRA Loop

It’s the DBcc which causes the problem - DBRA quits the loop when
the counter register hits -1 so the count should really have been
loaded with one less than the required iteration value. You may
think that slips related to these types of loops should be easy to
find but such errors are easily missed as also are addressing mode
errors. For example writing:

MOVE.B 10, dO

which loads dO with the contents of memory location 10 when you
really meant to load dO with the value 10 like this:

MOVE.B #10, dO

Often such trivial slips will cause a program to completely crash
and in such circumstances it must be said that debugging tools do
help make life easier. By tracing through the appropriate code area
the instructions producing the crash can be directly identified and
by working backwards from this point the cause can usually be
found. If, for instance, a function call is to blame then its
arguments can be examined for NULL pointers or otherwise
incorrect values. If the program crashes with an addressing error (ie
a Guru 03) then it's the addresses of the data items that have to be
examined. Utilities like Devpac’s Monam debugger make all such
investigations a piece of cake.

There are a million and one things to watch out for and even if |
gave you a list of every slip that had ever been made... you, like
everyone else, would find your own variations. General guidelines?
Well, for my money these are the ones that will protect you from
major trauma. Design and plan carefully before writing any code.
Then, write understandable code and document your programs well
enough for both yourself and others to understand. Build your
program out of small code units that do well defined jobs and use
an incremental development approach. This will not only minimise
potential problems but will ensure that, if and when a trouble spot
does arise, you will be able to quickly identify the area of code and
the problem related to it.

302

Mastering Amiga Programming Secrets
o 5 S N e T RS s N e e S N s

Oh, and by the way, there's one other thing that's worth doing
when you hit a coding snag. Make up your mind to enjoy the
challenge and have a little laugh about it along the way!

20:
Parting
Advice

No matter how many years of
coding experience you have,
coming to terms with a different
computer system always means
another learning curve to contend
with. To be honest the Amiga’s
system documentation, both in
physical size and complexity, has
stopped many would-be Amiga
programmers dead in their tracks
and the fact is that complexity-
wise the Amiga presents a whole
new ball game. One look at the
contents of the official Addison
Wesley Amiga reference manuals
is more than enough to convince
anyone that things have changed
considerably from the good old
eight bit days.

Coping with thousands of pages
of documentation, especially
since they are coupled to complex
hardware and very sophisticated
O/S ideas, is quite a daunting
prospect even to the pros. The
important point to bear in mind
is, of course, that you do not
have to learn about everything at
once!

The best idea is to adopt the
same principles as the
programmers who work with
mainframes - they don’t
memorise everything... they just
develop an understanding of
(some would say a sympathy
with) the system they use. Having
said that, most will still spend as
much time as they can reading
the manuals, but what they are
primarily trying to do is build up
an overview, ie a general picture,
of the system as a whole. It is this
familiarity with both the general
working of the system as a whole,
and with the documentation, that

303

Mastering Amiga Programming Secrets
R e e T T e e g s B e e e e L 2 R

makes it easy for them to get hold of information as and when they
need it.

If, you ask the average professional Amiga programmer what an
Exec Task structure looks like, or what numerical value is assigned
to Intuition’s WLFG_BACKDROP flag... they are unlikely to know (or
particularly care in the latter case). But one thing is certain... they
will know where to find out! Many programmers will specialize
graphics, sound, comms etc, and again if you ask a graphics
specialist how you set up the Amiga’s serial port for high-speed
MIDI transmission the chances are again odds on that they won't be
able to tell you. Given some time and the necessary documentation
however they will come across with the goods.

Experience with the machine is important but all professional
Amiga programmers will tell you the same thing... access to decent
technical info comes extremely high on the list of priorities. The
first piece of parting advice is simply this: do not even think about
trying to enter the world of serious Amiga programming without
getting the official documentation - it really is worth its weight in
gold. What you may also need, because the official manuals are
written primarily for professional programmers, are other books
(such as this one) which attempt to explain some of the issues
using a softer, tutorial style, approach.

I've had the chance to see a lot of Amiga code that has been written
by programmers in their ‘early Amiga system days’ (and of course |
also have walked into many technical snags as | became Amiga
system literate). As far as common pitfalls are concerned however,
a number of things have stuck in my mind:

Firstly, a lot of programmers who have come up via the route which
involved hacking the eight bit Commodore 64, Sinclair ZX81 and
the like and tried to adopt the same suck it and see whilst you type
approach on the Amiga. Basically it's just not possible to just sit
down at the keyboard and start writing Amiga programs because
they tend to be too large and too complex to tackle in that way. You
have to decide what you want to do, plan, design, code and then
test your program carefully. You also have to implement your ideas
in a way which follows the rules which the multi-tasking Exec
imposes on all Amiga programs (except those which take over the
machine completely). This means you will need to take an interest
in program design as an integral part of code preparation. For the
Amiga programmer such ideas are not useful extras — a systematic
approach is a necessity. This book was not the place to deal with
program design issues but underneath all of the examples ['ve
given there has been a solid, and carefully planned, design
framework.

Secondly I've noticed that many programmers who are new to C
come to grief because of silly mistakes with pointers and use of the

Parting Advice
T S S

address-of (&) operator (especially when passing parameters to
library functions). The use of ANSI C’s prototypes can, if used
properly, almost eliminate these types of errors so if you are using
an ANSI C compiler get used to making the most of this new facility.

Thirdly, I've noticed a lot of code which has had either poor, or
totally non-existent, error handling and pointer-validity checking
schemes. If there is one thing that the Amiga programmer should
not be... it’s an optimist in these areas. I've offered, and used
throughout the book, an ADT based resource
allocation/deallocation scheme that has proved its worth time and
time again. Don'’t feel obliged to use my scheme but do make sure
that you implement some equivalent procedure.

The fourth area that needs to be mentioned concerns the assembler
coder. The hardest thing about learning assembly language on the
Amiga is not learning about the 680x0 instructions - it's coming to
terms with the Amiga’s operating system. To do that you need to be
able to use both the system documentation and the large number of
tutorial style books that are available and the bad news is that most
of the system explanations are written with the C programmer in
mind. The solution is simple - all aspiring assembly language
programmers MUST learn C - if only to be able to understand the
system documentation! In coming to terms with C and with the
Amiga’s O/S and its documentation - most of the problems
normally associated with low-level 680x0 coding on the Amiga will
disappear!

Now all these complexity issues, as always, are relative not
absolute: if you have studied computer science at school or college,
or have worked with a multi-tasking computer system before, then
you will have less to learn because many concepts will already be
familiar. Similarly, if you've used languages like Pascal (which uses
records in much the same sort of way that C uses structures) some
language transition problems will be less troublesome. If, because
of prior experience, the Amiga road seems relatively
straightforward then be thankful. If you are still struggling then be
patient and don’t worry — almost everyone who has ever sat down
to learn about the Amiga system will have had, at some time or
other, to cope with exactly the same difficulties.

With a system as complex as the Amiga we are getting to the point
where even the professionals will admit that they’ll never learn all
there is to know about the Amiga. My advice? Don’t worry about the
amount of material that needs to be understood - at any one time
concentrate only on those aspects related to the project which you
are currently involved with (in other words adopt a ‘need to know’
policy to guide your path through the system documentation).
Above all, as I've said before, you should enjoy the challenge
because it is undoubtedly good for the soul!

306

Mastering Amiga Programming Secrets
T S o 35— R = T T R O T e e~ s s

Appendix A:
The Warnier
Diagram

On a few occasions within this
book | have provided program
design sketches called Warnier
diagrams. Most of you will not
have heard of these so here are a
few notes about how to interpret
them. First however an important
point: Warnier diagrams are a
general tool and, as such, aim to
obtain solutions to problems that
are completely independent of
both the computers and the
languages which might eventually
be used to implement the chosen
design. These latter factors may
well affect the final coding
stages, but they should not
usually influence the logical
solution to a design problem. It is
therefore a design method which
is equally applicable whether
programs end up being coded in
high level languages such as
Basic, C, C++, Pascal or Cobol, or
coded in low level languages such
as 680x0 assembly language.

It’s fair to ask why you should
need to use something like the
Warnier diagram in the first place
especially when many high-level
languages are self documenting to
some extent anyway. With a high
level language it is frequently
possible to write short programs
without any explicit design stage
and this is especially true if you
know exactly what you want to
do. With more complex
programming tasks, or when
programming with say assembly
language, trust me — the design
stage does not only become far
more important — it becomes
vital. It provides a means of
separating the logical problems
of design from the practical

307

Mastering Amiga Programming Secrets

problems of coding and by so doing enables you to tackle your
programming in coherent stages. This separation is especially
important with machines such as the Amiga because Intuition based
programs tend to be both large and relatively complicated.

A Warnier diagram is essentially a set of curly brackets, that define
both particular groups of operations and the order in which they
should be performed. The easiest way to show you about these
diagrams is to take an example. In this appendix I'm going to use a
simple example just to enable the general notational ideas to be
understood.

Let’'s imagine then that we wish to produce a report, consisting of
details held on a computer file on disk. The Warnier diagram of the
basic problem is shown in figure Al.1.

/" BEGIN REPORT
(1 time)
ACCESS FILE
(1 time)
REPORT <
PRINT DETALLS ON FILE
(1 time)

END REPORT

((1 time)

Figure Al.1. Essential characteristics of the simple report generator .

The bracket is read from top to bottom and describes a procedure
or group of operations that has, arbitrarily, been called REPORT.
The numbers which you see written underneath the various
statements identify how many times the item is to be performed
and, with just those two conventions, our first diagram is already
illustrating some essential features. Do we know anything more
about the problem? Can we think of any information that could be
relevant? Well, we know that: computer files need to be opened
before reading and closed once the read operation is complete.
These details could therefore also be added to the diagram. To
enable us to explain some further conventions used with Warnier
diagrams let us first add a minor complication to the problem - let
us suppose: the user wishes to access a file of his (or her) own
choosing and to obtain a printed report of the details on the file.
The specified file may not exist, and, if this is the case the user
should be informed.

Appendix A: The Warnier Diagram
e L s R o e A R AR s R R R NS AR e

These changed or altered requirements can be represented by a
more detailed Warnier diagram:

4 BEGIN REPORT
(1 time)
ASK FOR fFILENAME
(1 time) 4
OPEN FILE
(1 ime)
ACCESSFILE
(1 time)
FILE EXISTS <
(0.1 time)
< PRINT DETAILS
(1 time)
CLOSE FILE
® (1 time)
AN
INFORM OPERATOR THAT
FILE EXISTS FILE DOES NOT EXIST
(0,1 time) (1 ime)
END REPORT

Figure Al.2. Some new restrictions added to Figure Al.l.

Figure A1.2 shows, in Warnier diagram form, the requirements of
the problem as it is at the moment. We are using the convention
that the logical opposite of a statement is written by placing a bar
over it.:

FILE EXISTS means FILE DOES NOT EXIST

I'm also using a @ sign to separate mutually exclusive operations
(sets of operations which will not occur together). In the present
example the file will either exist or it will not exist — so only one of
these two operations would be performed at any one time and (0,1
time) is written underneath the statements involved. At other times
the operations shown within a bracket may need to be repeated and
in these cases an expression such as (1,N times) would be used.

The conventions used so far are in fact the only ones you will need
for the majority of problems that you are likely to encounter. Here
they are collected together for convenience:

¢ Brackets are used to define sets of operations.
e Brackets are read, and performed, downwards within any

Mastering Amiga Programming Secrets
T e e NIt S T T B e e R e iy B R R B ST e S R

one level. The item at the top of the bracket is performed first,
the item at the bottom performed last

e The logical opposite of a statement can be written as the
original statement with a bar drawn over it.

e Brackets written to the right of a statement indicate the
operations to be performed IF that statement is performed.

e Underneath each item or statement we indicate the number
of time the operations should be performed.

e Mutually exclusive statements are written separated by a
sign.

Using these conventions we can express in English exactly what
figure A1.2 tells us: we are dealing with a certain procedure, called
REPORT that starts by asking for the name of a file. If the file exists
then it is opened, accessed, the details printed, and then the file is
closed. If it does not exist then the operator is informed of the fact.
Remember that if the file does exist then it is the group of actions
(subset) shown to the right of the label FILE EXISTS that are
performed.

It’'s important to realise that these diagrams are not just useful for
describing the static logic of a finished program, they're a visual aid
that are used to sketch out the characteristics of a problem or a
piece of code during the time that it is being created. Usually the
ideas on what needs to be done changes, sometimes drastically, as
your initial ideas are examined in more detail and to appreciate the
elegance and speed with which these diagrams can accommodate
all manner of changing requirements let's now place some further
restrictions on this problem: within this hypothetical computer
system are files containing sensitive data (perhaps personnel data,
wages or medical records). Such data must be protected from
unauthorised access and users are therefore issued with access
code numbers, so that examination of sensitive files is restricted to
those users with the proper authority. If unauthorised attempts to
access this data are made the computer should record the fact,
perhaps by making an entry into a special security file.

Let's first consider the new constraints in isolation. We need to
check whether the file specified by the user is a restricted file, if it
is we must ask for the user’s code number. If the code is correct
then we allow access, if not we write a security record indicating an
attempted illegal access.

Appendix A: The Warnier Diagram

/
BEGIN REPORT
(1 time)
ASKFOR FLENAME
(1time) /
BEGIN FILE EXISTS
(1 time) /
ASKFOR CODE
(1 tme)
ACCESSFIE
(1 time)
CODE CORRECT
(0.l time)
FILE RESTRICTED < PRINTDETALS
0.1 time) ® (1 time)
REPORT < FILE EXISTS < ——
(0.l time) ® CODE CORRECT | WRITE SECURITY
(0.1 time) RECORD ILLEGAL
\ ACCESS ATTEMPT
7 (1 time)
ACCESSFILE
- (1 time)
@ FILE RESTRICTED
(.1 time) PRINT DETALS
(1 time)
END FILE EXISTS
(1 time) %
N
FILE EXISTS INFORM OPERATOR THAT
(0.l time) FILEDOESNOTEXIST
(1 time)
END REPORT
(1 tme)
AN

Figure Al.3. A hierarchy is forming within the revised problem.

The diagram in Figure Al.3 shows the Warnier form that describes
our new requirements. Notice that although I've redefined the
problem and added more detailed restrictions it has not been
necessary to restructure the complete diagram - all I've had to do is
superimpose the new details and restrictions on to the existing
diagram structure. The diagram is therefore actually growing as we
successively modify and redefine the known details of the problem.
It’s actually doing a lot more than this because, as well as
documenting and expressing the logical requirements of the
problem, it is providing a description that makes the conversion to
a computer language equivalent form remarkably simple.The secret

Mastering Amiga Programming Secrets

of converting a Warnier diagram into a finished program lies in
regarding each bracket involving more than one operation as a
subroutine. There are exceptions to this general statement but they
occur only when the statements involved are obviously simple to
code. Here's a simple pseudocode Basic sketch to illustrate what I
mean...

* —

PSEUDO-BASIC-REPORT-MODULE

*

INPUT NAME OF FILE

IF FILE EXISTS THEN GOSUB "FILE EXISTS' ELSE PRINT "FILE DOES
NOT EXIST’

RETURN TO CALLING PROGRAM
*
REM SUBROUTINE.......... FILE EXISTS

IF FILE IS RESTRICTED THE GOSUB "RESTRICTED FILE" ELSE GOSUB
" ACCESS’

RETURN

*

REM SUBROUTINE.......... RESTRICTED FILE
INPUT SECURITY CODE

IF SECURITY CODE=CORRECT CODE THEN GOSUB "ACCESS’ ELSE
GOSUB "ILLEGAL ACCESS’

RETURN

*

REM SUBROUTINE.......... ILLEGAL ACCESS

WRITE TO I/A LOG FILE THE TIME OF ATTEMPT AND THE ACCESS
CODEPRINT "THIS IS A RESTRICTED FILE - PLEASE MAKE NO
FURTHER ATTEMPTS’

RETURN
REM SUBROUTINE.......... ACCESS

THIS WOULD BE A ROUTINE TO ACCESS THE DATA IN THE FILE AND
DISPLAYON TERMINAL OR PRINTER ETC.

RETURN

*

Figure Al .4. Pseudo-BASIC code for the example.

Appendix A: The Warnier Diagram
T e e e N s B e o PP G

The Warnier diagram can be used to develop a picture of individual
routines, of programs and individual modules, and of complete
systems. One technique, one set of rules... but a great many
applications! All such descriptions do however share a common
bond - the descriptions are logical plans! The problem itself may be
related to, and therefore dependent to some extent on, a particular
machine, but the diagrams themselves offer essentially general
solutions, isolated completely from specific computer languages.

Basically then the idea is to tackle the problem of designing a
program by looking at the logical characteristics. The only effect of
a final choice of language has during these stages is that you need
to keep in mind the fact that all of your diagram statements will
eventually need to be turned into real code. You must therefore
continue to expand your diagram statements until you reach a
point where it is possible to say ‘Yes, the operations we are
describing in the lower levels of the diagrams (the right-most
levels) are easily capable of being coded directly in the language |
have chosen to use!

In practice we reach this point far sooner with high-level languages
than with assembly languages because more complex operations
are supported. The relevant point to make here is that the general
design principles are always the same - the only difference is that
when you analyse problems that will be coded in assembly
language you will need to carry the analysis further.

Mastering Amiga Programming Secrets
it g A S AR N R A DA T g A g L ML b B

Appendix B:
More
Program
Design Notes

Having provided the basics of the
Warnier diagram notation |
thought one C-style example of
how they are used would be of
interest. The following problem
involves some very common file
handling operations and although
it is a simple design task I've
dealt with the issues in some
depth in order to give you an idea
of how I tackle code design. The
idea is to write a program which
opens specified source and
destination disk files, and then
transfers data on a byte-by-byte
basis from the source to the
destination doing some (as yet
unspecified) processing. The first
step is to tackle the general
aspects of the problem without
worrying about what will be done
to each byte as it is transferred.
This will provide a framework for
the program into which we’ll then
be able to slot in suitable code to
carry out whatever processing is
needed.

It is very tempting, since the
above description both tells us
and implies a lot about what
needs be done, to sketch a
suitable C framework program
directly. Now | know that this is
what most experienced C
programmers would do anyway
but that is only because they’ll be
completely aware of what needs
to be done. [want to show you
how such code can be crafted
from the ground up using these
Warnier techniques because the
ideas are generally applicable to
the design of all complex code
modules (where direct coding
usually leads to all sorts of
difficulties).

316

Mastering Amiga Programming Secrets

The first step is to try and identify what the program has to do. In
other words we shall try and sketch the output set. The benefits of
this are two-fold: firstly, this analysis helps us understand more
about the problem itself Secondly, since any vagueness which
might be present in the original description can be eliminated, we’ll
usually be able to build a better framework for the program than
might otherwise have been possible.

Describing the Output Set

What do we regard as the output set? The best idea is to opt for
including anything that can be recognized as being something
which the program does - either in the way of internal processing
or external output. Thus printed output, graphics/text displayed on
the screen, files being opened, files being closed etc, are all output
in our sense of the word. Perhaps the most important observation
at this point in time is that we want to describe everything the
program does, not just the things it does when everything is going
smoothly. For instance - the problem description suggests that the
first thing the program should do is open the source file but what
we need to recognize is that this operation might fail. Bearing this
in mind | decide to start the output description as shown in figure
A2.1:

OPEN SOURCE
(0.1 time)

{ ©®

OPEN SOURCE
(0.1 time)

N

Figure A2.1. Making a start.

What should the program do if the specified source file cannot be
opened? Let’s assume it should print an error message:

’OPEN SOURCE user told that source file cannot be opened
(0,1 time)

 ©

OPEN SOURCE
(0.1 time)

N

Figure A2.2. adding an error message note.

More Program Design Notes
e T e i P S

Another thing the program must do is open a destination file. Since
it only needs to do this if the source file has been successfully
opened we place these new open details within the OPEN SOURCE
subset:

/\’—
OPEN SOURCE user told that source file cannot be opened
(0,1 time)
® (GPEN DEST user told destination flle cannot be
(0,1 time) opened
OPEN SOURCE @
(0.1 time) <
OPEN DEST
(0.1 time)
N
N

Figure A2.3. More details are added.

If the files open OK the program is going to do some processing. It
will read bytes from the source, modify them and write them back
to the destination file. These are repetitive actions which will occur
as many times as there are bytes in the file so we extend the
diagram as shown in Figure A2.4:

317

318

Mastering Amiga Programming Secrets

(e
OPEN SOURCE
(0.1 time)

®

OPEN SOURCE
(0.l tme)

{mertoh&mmﬁbmmubecpand

/ —
OPENDEST
(0.1 time)

OPEN DEST
0,1 tme)

N\

user told destination flle carmot be opened

READ BYTE

END-OF-FILE
MODFYBYTES < (0. time)

(1ntmes)
®

END-OFFILE

/\

\ \

EXIT FROM
MODIFY

LOOP

MODIFY
DATABYIE

WRITEBYTE

Figure A2.4. A useful picture of the program is building up.

We also know that files which are opened have to be closed. Where
do these details go? Again it’s not too hard to fathom out: files can
only be closed if they have been sucessfully opened. Furthermore
we'll only want to close the files after all read/write operations have
been completed. The obvious place for the file close operations is
near the end of the brackets which indicate successful opening -
that way every file that is ever successfully opened will be closed. If
we adopt this plan the output description will grow accordingly:

More Program Design Notes
I R e T R T o e P Ry Ty

¥ OPEN SOURCE
(0,1 time)

OPEN SOURCE
(0] time)

user told that source file carmot be opened

EXIT FROM
MODIFY

MODIFY
DATABYTE

WRITEBYTE

/
OPEN DEST user told destinatian file carmat be opened
(0,1 tme)
® / / READBYTE
END-OF-FILE
OPEN DEST MODIFFYBYTES | (01 tme)
(0,1 tme) < (1,ntimes) <
CQLOSEDEST @
(1 tme) —
CLOSE SOURCE END-OFFILE
(1 me)
\ N\ \

Figure A2.5: The diagram is successively refined as more detail is added.

The thing to recognize here that the WRITE BYTE operation might
well fail - the disk could be full. I'll assume that if a write is
unsuccessful the program will display an error message, close the
(perhaps partially written) file, and then remove it. Figure A2.6

shows how these thoughts are incorporated into the design:

319

320

Mastering Amiga Programming Secrets
i A P S AR R SO T e L i T BN S Y, S S e)

/

N\

OPEN SOURCE user tald that source file caonot be opened

(.1 time)

®

OFEN SOURCZE
(0.l tme)

OPENDEST user told destination fle carmat be opened

(.1 tme)

OPEN DEST
0.1 time)

READ BYTE
(1 time)

END-OFFIE
(0. tme)

END-OF¥1E
(0.1 time)

QAOSESOURCE
(1 time)

EXITFROM

MODIFY BYTES

Loce

WRIIEBYTE
(1 tme)

[WRITE OK
(0.1 time) <

ole=
DESTFLE
(1 tme)

REMOVE
DESTFLE

(1 tme)

FROM
MODIFY

LOOP

Figure A2.6. Diagrams like these provide a lot of information about the problem.

Now we have a slight problem: according to the diagram the
program always closes destination files at the end of the OPEN
DEST bracket but we have decided that, in the event of a bad write,
the destination file is going to be closed prematurely and removed.
We cannot therefore leave the original CLOSE DEST operation where

More Program Design Notes

it is because we have decided that, where a write error has occured,
the destination file will no longer exist.

We have got to move the original CLOSE DEST operation to a more
suitable position and here's how we do it: Firstly, we note that
destination files fall into one of two mutually exclusive categories -
those where a write error occured, and those where no write error
occured! The secret now is to recognize that, out of all the file read
and write operations which take place, only ONE normal read EOF
will occur and at that time all of the necessary destination data
would have been sent to the destination file. That subset therefore
has both the right position and right frequency correspondence to
hold our CLOSE DEST operation for closing destination files under
non-error conditions.

321

Mastering Amiga Programming Secrets
i T P e O R P 7 R o PR G R i)

/
OPEN SOURCE user told that aource file cannot be opened
(0,1 time)
4
OFEN DEST user told destirtionfile cannat be opened
(0.1 tme)
(mnﬂmz
® (e
QUOSEDEST
(I time)
p END-OFFILE
(0.l time) EXITFROM
@ MODIFY BYTES
LoCP
/
MODIFY DATABYTE
/wxm»:a(
Mam{sms< (0.1 time)
{ OPENSOURE (1 times)
(0.l tie) <
— /
< END-ORFILE < QOSE
OPEN DEST (0,1 time) @ DESTFILE
0.1 tme) wxm:mm:< (1 time)
(1 time)
REMOVE
_ DESTFLE
WRITE 0K < (1 tme)
0.1 time)
EXIT
\ FROM
N MODIFY
BYTES
QOSE DEST \ LOOP
. N\
(1 tme)
N\
QUOSE SOURCE
(1time)
N\
N\

Figure A2.7. Further modifications.

Now, the details present in the output set have been growing but
there are still a few things missing, such as how the program knows
which files are being dealt with! We should also recognize that the
program will not just attempt to open files that are open-able - it
must of necessity try and open all files. The point to bear in mind
here is that, although some file opening operations will succeed

322

More Program Design Notes

and others will fail, the actual attempted open operations will be
made on each and every filename.

With these details added the output set, the description of what the
program should do shown in Figure A2.8, is beginning to look
reasonably complete:

323

Mastering Amiga Programming Secrets
T O P T T P P P S P SR e 0]

/

COULECT SOURCE FLEMANE

(1 tme)

COLLECT DEST FLENAME

(1 tme)

ATTEMPT TO OPEN SOURCE

(1 time)
OFEN SOURCE
(.1 time)

®

OPENSOURCE
(0.l time)

{muﬂﬂnxmceﬁhmmbecpmed

<

/

OPEN DEST user told destination file cannot be opened

(.1 tme)

(.1 time)

QOSESOURCE
(1 tme)

/7
READ BYTE
(1tzne)
QLOSE DEST
(1 tme)
END-QFFIE
i (0.l time) EXIT FROM
MODIFY BYTES
Loce
/
MODIFY DATA BYTE
/
WRITEOK
MCDIFY BYTES, (.1 trme)
$
(ln tinen) @
END-QFFILE <
(0.l time) @
WR!IEBYIE<
(1txme)
(0.1 tme)
N\
N\
QUOSE DEST \
(1 tme)
N\

DESTFIE
(1 tme)

REMOVE
DESTFIE

WRIEOK < (1 time)

FROM
MODIFY

Loop

Figure A2.8. The Warnier description now shows very clearly what must be done.

More Program Design Notes
N S e R o Y TR

I think you'll agree that we now have a much better idea of what the
program has to do, and have a clear idea of the various
assumptions which have been made along the way. The thing to
bear in mind at this point is that this output set should be a
description of the actions that are to be carried out by the program.
If we've thought carefully enough it will be, and in this sense it is a
statement of output requirements which are invariant — in other
words it is a description of the things which we now recognize the
program must do!

It is of course quite possible that, as our understanding of the
problem we are tackling grows, we may discover that we have
forgotten to include something of importance but, notwithstanding
such omissions, this output set description can be considered
complete in the sense that it now appears to represent all of the
actions which we feel the program should carry out.

The Input Set

On the face of it there is very little in the way of input data. Two
obvious input items are the two filenames supplied:

/
SOURCE FILENAME

(1 time)

DEST FILENAME
[l time)

Figure A2.9. Attempt to decribe the programs input.

The other inputs to the program is the source file, but here this
may or may not exist depending on whether the source filename
corresponds to a real file. This being so, we can expand the input
set definition to this:

Mastering Amiga Programming Secrets
e S VS e AP e P PR SO

(SOURCE FILENAME
(1 time)

DEST FILENAME

(1 time)

SOURCE FILE DATA BYTES
< (0,1 time) (n bytes)

D

SOURCE FILE
(0,1 time)

N\

Figure A2.9. Input set description after a few additions.

We now need to build a program description based on any
extension of this input set which is compatible with both the
existence of the data items shown in the input set and their
frequencies. Given the trivial nature of the abovementioned input
set I'm going to create the program description simply by
duplicating the hierarchy of output set using the diagram shown in
Figure A2.10:

More Program Design Notes

COLLECT SOURCE FLEMANE
(1 tme)
COLLECT DEST FILENAME
(1 time)
ATTEMPT TO OPEN SOURCE
(1 tme)
OPEN S(URCE usex tnld that source file caat be opened
(0.1 tme)
/
QPENDEST user tnid destination fie canoot be opened
(0,1 time)
® ,
READ BYTE
(1 tzne)
END-QFFILE
4 (0.1 time)
MCD]I-YBYIB<
OPEN SOURCE (1o tines)
(0.1 tmoe) <
< END-QFFILE <
QPENDEST 0.1 tme)
(0.1 tme)
\
QOSEDEST
(1 tme)
N
QOE SARCE
(1 time)
\

QUOSE DEST
(1 tme)
EXITFROM
MODIFY BYTES
Loop
/
MODIFY DATA BYTE
(WRITEOK
(0.1 time)
/
aos
@ DESTFILE
WRITEBYTE (1 tme)
(1 tme)
REMOVE
DESTFLE
WRITE OK < (I time)
(0.l time)
EXIT
FROM
MODIFY
BYTES
\ Loop
\

Figure A2.10. A selected input set for the program.

327

Mastering Amiga Programming Secrets
R P e e VT e e W T B e e e R P TR]

What were the frequency correspondences which had to be present
when I mixed these descriptions? Here they are paired together:

Input Set Itemns Output Set Actions

(these things exist as (these are things which

input to the program) the program has to do)

SOURCE FILENAME COLLECT SOURCE FILENAME

(1 time) (1 time)

DEST FILENAME COLLECT DEST FILENAME

(1 time) (1 time)

SOURCEFILE OPEN SOURCE (a successful open)
(0.1 time) (0,1 times)

SOURCEFILE OPEN SOURCE (unsuccessful open)
(0,1 time) (0,1 time)

SOURCE DATA BYTES MODIFY BYTES (processes n bytes)
(n bytes) (1, n times)

Figure A2.11. Some input/output set frequency correspondences.

Diagram to Code Conversion

Having produced a reasonably detailed Warnier diagram of the
program my thoughts would be yes it is now time to start coding.
How do | know that the diagram is complete? To be honest | don't,
but: | am happy that all of the operations OPEN SOURCE, OPEN
DEST, WRITE BYTE etc, shown on the diagram are things which (in
my opinion) are very easily coded.

The idea then is to code the main bracket levels as function calls
and only deviate from this when the code at a particular level is
simple enough to code directly in-line. Obviously as we get into the
code translation we have a certain amount of syntactic detail to
show. ANSII C requires that you define prototypes for function calls
so that the compiler can check that argument types and return
values are correctly typed. It is possible to add this sort of detail to
the Warnier diagram, ie include details such as those shown in
Figure A2.12:

More Program Design Notes
1

SPECIFY INCLUDE FILES stdio.h

(1 time) types.h

DEFINE FUNCTION PROTOTYPES void OpenSource(void);
(1 ime) void OpenDest(void);
DEFINE GLOBALS FILE *g_source_p;

(1 time) FILE *g_dest_p;

Figure A2.12. These sort of additions are normally unneccessary.

I didn't do this and in fact, in my opinion, the addition of this type
of syntactic detail is unnecessary. The Warnier diagram should
provide a language-independent description of what needs to be
done - it seems quite absurd to clutter such diagrams with details
that are going to be present in the code in almost the same form.
My advice then is to keep the language-specific coding details well
away from the Warnier diagram representation. Having said that
you ought to try to document the program in a way which makes it
easy for someone reading the source to see the layout. A simple
scheme is all that’s needed. Here’s one that | commonly use:

title

includes

defines

prototypes

globals

main() function

nested level() functions

support functions

For clarity [divide the various sections using /* */ lines and
for non-function sections I'll include a title and, if I think it will
help, perhaps some additional notes.

My translation of our example program is going to be a
straightforward ‘vanilla C' version that will run on anything from an
ST or an Amiga to a UNIX system. Some notes are in order:

e I've chosen to collect filenames via command line
argc/argvl] parameters.source and destination filename
pointers are declared and these are initialized to point to the
original command line arguments.

e I'm not checking for the correct number of parameters, so if
the user doesn't supply one or other filenames that name
pointer will be NULL and the corresponding fopen() call will
fail - experience tells me it should fail harmlessly!

Mastering Amiga Programming Secrets
L e S S S S

e This first translation, after all I've said about minimizing the
use of global variables, does in fact use global variables for
the filenames and the FILE pointers. Why? Initial simplicity in
the first runable version. It also allows me to defer thinking
about what parameters are needed until I've got a C sketch
available which shows clearly what information each routine
will need access to.

e ANSII C’s buffered file operations can be used to handle the
file opening and closing with statements like
fopen(g_name_p,"rb") being used to open the specified files
for binary mode reading. I've opted for binary file mode
because we haven’t yet decided what processing is to be done.

e ['ve layered the open close operations as nested function
calls but the do/while loop used to represent the MODIFY
BYTES operations I've kept within a single routine by using if {
} else { } statements.

e In this example my error message routines are just simple
printf() statements. | have however deliberately kept them
away from the bulk of the code by writing a short function

ErrorMessage().
Here then is the first version:
/* */
/* Example: A2-1: skeleton framework
*/
/* */

/* some includes: */

#include <stdio.h>

#include <exec/types.h>

/* Ly
/* some defines... */

#define NO_SOURCE "cannot open source file\n*
#define NO_DEST "cannot open destination file\n"
/* */

/* some prototypes...*/

void OpenSourceOK(void) ;

void OpenDestOK(void);

void ErrorMessage(TEXT *error_message);
/* */
/* some globals... */

FILE *g_source_p, *g_dest_p;
TEXT *g_source_name_p, *g_dest_name_p;

More Program Design Notes
[Riamsnne e e e F g s s Mg s]

/* */
main(int argc, char *argv[])
{
g_source_name_p=argv[1]; g_dest_name_p=argv[2];
if(g_source_p=fopen(g_source_name_p,"“rb"))
OpenSourceOK() ;
else ErrorMessage(NO_SOURCE) ;

}
/* */
void OpenSourceOK(void)
{
if (g_dest_p=fopen(g_dest_name_p,“wb"))
OpenDestOK() ;
else ErrorMessage(NO_DEST);
fclose(g_source_p);
}
/* */
void OpenDestOK(void)
{
BOOL exit_flag; int c;
do {
if((c=fgetc(g_source_p))==EOF)
{
fclose(g_dest_p); exit_flag=TRUE;
}
else
{

/* DO SOMETHING WITH DATA BYTE */
if((fputc(c, g_dest_p))==EOF)
{
fclose(g_dest_p);
remove(g_dest_name_p);
exit_flag=TRUE;
}

}
}while(!exit_flag);

Mastering Amiga Programming Secrets
N P P o]

/* */

void ErrorMessage(TEXT *error_message) {printf(error_mes-
sage);}

/* */

One thing you might notice is that we've forgotten to include error
message for bad write cases. It is obviously not a major omission
and these details are easily imposed onto the Warnier description:

More Program Design Notes
1

/ COLLECT SOURCE FLEMANE
(1 time)
COLLECT DEST FLENAME
(1 time)
ATTEMPTTO OPEN SOURCE
(1 time)
OPEN SOURCE user told that source file cannat be opened
(0,1 tme)
/
QPEN DEST uBer tald destination file cannct be opened
(0.1 trme)
(READ BYTE
(1 tme)
CUOSEDEST
(1 time)
END-CFFLE
4 (0.1 time) EXITFROM
@ MODIFY BYTES
LooP
< MODIFY DATA BYTE
@ ("WRITE OK
MODIFY BYTES < (0. time)
OPENSOURCE (1 times)
(0.l time) b
¢ END-QFFLE @ (' QoS
QPEN DEST (0.1 time) DESTFLE
O, tne) WRHEBYIE< (1 time)
(1 tme)
THLLUSER
BAD
WRIEOK | WRTE
(Oltme) | (1ltme)
\ < REMOVE
\ DESTFILE
CLOSEDEST \ (1 time)
(1 time) EXIT
\ FROM
QOSESARE MODIFY
(1 time) BYTES
\ \ , Loop

Figure A2.13. Error message additions etc, are easily added at any stage.

Mastering Amiga Programming Secrets
it A e N Tt e AN T P AN E D G O L A T SRS S e |

What you will no doubt notice is that there was absolutely no
difficulty in deciding where on the diagram this extra message
would need to be placed. Similarly the section of C code in the
program is also easily identified. and the changes simply involve
adding a new #define message and changing the fragment which
reads:

fclose(g_dest_p);
remove(g_dest_name_p);
exit_flag=TRUE;

to:
fclose(g_dest_p);
ErrorMessage(BAD_WRITE) ;
remove(g_dest_name_p);
exit_flag=TRUE;

The result of these changes is shown below:

/* */
/* Example: A2-2... modified skeleton framework */
/* */

/* some includes... */

#include <stdio.h>

#include <exec/types.h>

/* */
/* some defines... */

#define NO_SOURCE "cannot open source file\n"
#define NO_DEST "cannot open destination file\n"

#define BAD_WRITE "error whilst writing - removing desti-
nation file\n"

/t */
/* some prototypes...*/

void OpenSourceOK(void) ;

void OpenDestOK(void);

void ErrorMessage(TEXT *error_message);
/* */
/* some globals... */

FILE *g_source_p, *g_dest_p;

TEXT *g_source_name_p, *g_dest_name_p;

/* */
main(int argc, char *argv([])

More Program Design Notes
e PR s RO Uy s e e P e

{
g_source_name_p=argv[1]; g_dest_name_p=argv([2];
if(g_source_p=fopen(g_source_name_p,"“rb*))
OpenSourceOK() ;
else ErrorMessage(NO_SOURCE);
}
/* */
void OpenSourceOK(void)

{

if (g_dest_p=fopen(g_dest_name_p,"wb"))
OpenDestOK() ;
else ErrorMessage(NO_DEST);

fclose(g_source_p);

}
/* */
void OpenDestOK(void)
{
BOOL exit_flag; int c;
do {
if((c=fgetc(g_source_p))==EOF)
{
fclose(g_dest_p); exit_flag=TRUE;
}
else
{
/* DO SOMETHING WITH DATA BYTE */
if((fputc(c, g_dest_p))==EOF)
{
fclose(g_dest_p);
ErrorMessage (BAD_WRITE) ;
remove(g_dest_name_p);
exit_flag=TRUE;
}
}
}while(lexit_flag);
}
/* */

Mastering Amiga Programming Secrets
P)

void ErrorMessage(TEXT *error_message) {printf(error_mes-
sage);}
/* */

A More Sophisticated Translation

Let us now create a more useful ‘black box’ version which, when
given source and destination filenames, will carry out the file
modification process returning a success failure indicator to the
calling program.

We've already got the basic shell of the program complete so we
don’t need to go back and change anything design wise. What we
must do however is firstly eliminate those globals and secondly
remove our error message routine and replace it with code which
returns an error number to the calling program.

It’s an easy translation to do but in case you're new to such things
here are the exact stages I used: first of all | removed globals and
altered the function calls so that filename and file pointers are
passed between the various levels, modifying the prototypes
accordingly.

Other than the easy task of re-defining the error messages as error
numbers I did not want to tackle the function parameter code
changes and the success/failure error code changes at the same
time. Consequently | removed the ErrorMessage() routine and
commented out corresponding error calls — this enabled me to
compile and check most of this partly complete version without
getting any compiler errors:

/* */

/* Example: A2-3... partly complete version without glob-
als */

/* */

/* some includes... */

#include <stdio.h>

#include <exec/types.h>

/™ */
/* some defines... */
#define NO_ERROR
#define NO_SOURCE
#define NO_DEST
#define BAD_WRITE

/* */
/* some prototypes...*/

W N = O

void OpenSourceOK(FILE *g_source_p, TEXT *g_dest_name_p);

Disk Order Form

Please rush me my copies of the two Mastering Amiga Programming
Secrets disks.
I enclose a Cheque/Postal Order* for £4.00.

|\ = o o 1<

PN Lo | 33 TP

Contact phone number. ...

*Cheques payable to Bruce Smith Books Ltd.
Send your order to:

Programming Secrets Disks, Bruce Smith Books Ltd,
PO Box 382, St. Albans, Herts, AL2 3JD

Please note that unless otherwise requested we will add you to our
mailing list. This mailing list is currently only used to mail out to
our readers details of new and forthcoming books. This includes
our catalogue Mastering Amiga News.

Please take the time to answer the following questions:
How did you find out about Mastering AmigaDOS Secrets?

Where did you purchase your copy?

What other titles would you like to see in the Mastering Amiga
range of books?

Book Order Form
Please rush me the following:

Mastering AmigaDos 3 Volume One - Tutorial £21.95
D Mastering AmigaDOS 3 Volume Two - Reference £19.95
D Mastering AmigaDOS Scripts oL £19.95
D Workbench3 AtoZ Guide £14.95
D Amiga 1200 InsiderGuide £14.95
D Amiga 1200 Next Stepso i ittt i £14.95

Amiga assembler Insider Guide 14.95
D AmigaDisksand Drives £14.95

A1200 Beginners Pack £39.95+£3 P&P

Amiga Workbench 3 Booster Pack £39.95+£3 P&P
D Introduction to the A1200 video - Basic Tutorial £14.99
D Introduction to the A1200 video - A Deeper Look £14.99
D Mastering Amiga System - AdvancedC £29.95

Mastering Amiga Printers £19.95
[:] Mastering Amiga C it £19.95

Mastering Amiga ARexx £21.95
D Amiga BASIC - A Dabhand Guide £17.95
D Secrets of Frontier Elite £9.95
D Secrets of Sim City 2000 £9.95
I enclose a cheque/postal order for £ . p

I wish to pay by Access/Visa/Mastercard

card Number: (1O1O1C10101C1010101010O01010C]
Expiry Date: DDDD

Name: . . e
AdAressS: . .
..................... PostCode
Contact Phone Number:
Signed:

Please send your cheques, made payable to Bruce Smith Books Ltd
to:
Bruce Smith Books Ltd, FREEPOST 282, PO Box 382
St Albans, Herts, AL2 3BR
Telephone: (01923) 894355 - Fax (01923) 894366
E&OE.

More Program Design Notes
e e D T S S U PR VS|

void OpenDestOK(FILE *g_source_p, FILE *g_dest_p, TEXT
*dest_name_p);
/* */

UBYTE ConvertFile(TEXT *g_source_name_p, TEXT
*g_dest_name_p)

{
FILE *g_source_p;

if(g_source_p=fopen(g_source_name_p,"“rb"))
OpenSourceOK(g_source_p, g_dest_name_p);
/* else ErrorMessage(NO_SOURCE);
*/
return(NO_ERROR) ;
}
/* */
void OpenSourceOK(FILE *g_source_p, TEXT *g_dest_name_p)
{
FILE *g_dest_p;
if (g_dest_p=fopen(g_dest_name_p, "wb"))

OpenDestOK(g_source_p, g_dest_p, g_dest_name_p);

/* else ErrorMessage(NO_DEST) ;
*/
fclose(g_source_p);
}
/* */

void OpenDestOK(FILE *g_source_p, FILE *g_dest_p, TEXT
*g_dest_name_p)

{
BOOL exit_flag; int c;
do {
if((c=fgetc(g_source_p))==EOF)
{
fclose(g_dest_p); exit_flag=TRUE;

}
else
{
/* DO SOMETHING WITH DATA BYTE */
if((fputc(c, g_dest_p))==EOF)
{

337

Mastering Amiga Programming Secrets
fclose(g_dest_p);
/* ErrorMessage (BAD_WRITE) ;
*/
remove(g_dest_name_p);
exit_flag=TRUE;
}

}
}while(!exit_flag);

}

/* */
After a quick compile check confirming that no silly slips had been
made it was time to decide how to get success/failure information
back up to the calling program. | chose to use local error number
variables passing the error status back via return(). Notice
incidentally, that the error variables are initialized to a NO_ERROR
state and reassigned only if an error occurs. Again this sort of
translation seemed relatively trivial and, since the structure of the
program is still essentially unchanged, I saw little need to describe
the initialization of the error numbers and so forth on the Warnier
diagram.

What I'm trying to do of course is show you how | use these
diagram and coding techniques in practice. | am not trying to kid
either you (or myself) that trivial coding changes are best solved by
going back and working in diagram form. [was quite happy making
the global variable to parameter variable changes, and equally
happy to revamp the error message code so that we dealt with error
numbers. What I did not do however is make any significant
changes to the overall program structure which the design
diagrams led us to adopt!

Enough of the lecture, here’s the final code without globals:

/* */

/* Example: A2-4... complete parameter driven version
without globals */

/* */

/* some includes... */

#include <stdio.h>

#include <exec/types.h>

/* */
/* some defines... */

#define NO_ERROR 0

#define NO_SOURCE 1

More Program Design Notes
T T S LA S N T T I TR

#define NO_DEST
#define BAD_WRITE 3

/* */

/* some prototypes...*/

UBYTE OpenSourceOK(FILE *source_p, TEXT *dest_name_p);

UBYTE OpenDestOK(FILE *source_p, FILE *dest_p, TEXT
*dest_name_p);

N

* */
UBYTE ConvertFile(TEXT *source_name_p, TEXT *dest_name_p)
{

FILE *source_p; UBYTE error_number=NO_ERROR;

if(source_p=fopen(source_name_p,“rb"))
error_number=0penSourceOK(source_p, dest_name_p);
else error_number=NO_SOURCE;

return(error_number) ;

}

/* */

UBYTE OpenSourceOK(FILE *source_p, TEXT *dest_name_p)

{

FILE *dest_p; UBYTE error_number=NO_ERROR;
if (dest_p=fopen(dest_name_p,“wb"))

error_number=0OpenDestOK(source_p, dest_p,
dest_name_p);

else error_number=NO_DEST;
fclose(source_p);
return(error_number);
}
/* */

UBYTE OpenDestOK(FILE *source_p, FILE *dest_p, TEXT
*dest_name_p)

{

BOOL exit_flag; int c; UBYTE error_number=NO_ERROR;
do {
if((c=fgetc(source_p))==EOF)
{
fclose(dest_p); exit_flag=TRUE;

}

Mastering Amiga Programming Secrets
N T L ey S e e T e)

else
{
/* DO SOMETHING WITH DATA BYTE */
if((fputc(c, dest_p))==EOF)
{
fclose(dest_p);
error_number=BAD_WRITE;
remove(dest_name_p);
exit_flag=TRUE;
}
}
}while(!exit_flag);
return(error_number) ;

}
/t */

Byte Conversion Code - An Example

The reason I've not dealt with any specific type of byte-by-byte
conversion is simple - our generalized, and now well understood,
framework can form the basis of any number of file modification
utilities. Here is one such example - a straightforward black box file
encryption/dechipering routine for use in other programs.

The encryption trick uses a variant of byte-orientated exclusive-
ORing, an old favourite amongst programmers. The benefit of this
approach is that the program which performs the encryption
process can also be used to do the deciphering. Simple fixed key
exclusive-ORing however is far too easy to break so, to make life a
bit more interesting, | am going to use a scheme which takes into
account the position of each character being encrypted. Used in
conjunction with long string keys this twist, though simple to code,
is surprisingly effective. (Although it isn’t going to have the CIA’s
cipher boys quaking in their boots — with high-speed hardware this
particular cipher mechanism is still going to be easily broken.
Having said that you're unlikely to find anyone able to crack it
using any Amiga/ST based techniques!)

The program/routine would need three parameters and as a
command line utility might adopt this format:

EncryptDecipher <SourceFile> <DestinationFile> <EncryptionKey>
A callable routine could adopt a similar parameter arrangement
using this sort of function prototype:

UBYTE EncryptDecipher (TEXT *sourcefile, TEXT *destfile, TEXT
*encryptionkey)

More Program Design Notes
1

To write such a program all | have done is to add a few lines of code
to the parameter driven general file transfer routine which has just
been looked at. There is now an extra parameter to deal with, the
string used as the encryption key — | have added a suitable extra
argument so that the address of the key is passed down to the
routine which needs to use it.

Use of such a program? Text file encryption is one obvious
possibility. Another use, which might come in handy for hard disk
owners, is for encrypting potentially damaging system commands
and restricting the use of certain utility programs - keep the
encrypted form on the disk and temporarily decipher a copy when
you want to run it. Getting right up-to-date you've no doubt heard
of virus programs which can attach themselves to program code.
Well, there’s no way a virus could attach itself to an encrypted
version of a program and get away with it... because the additional
code would become meaningless after it had been deciphered!
Admittedly it is a bit over-the-top for most purposes, but the
encryption technique is another tool for fighting the virus makers
so it might be worth thinking about.

Now a word about the overall program design of this encryption
utility: I'm not going to repeat the program structure analysis
because, other than a one line byte-modifying statement (which
occurs just prior to a data byte being transferred to the destination
file) the steps are the same as those outlined earlier in this
appendix.

Basically we need in addition to know the length of the encryption
key and, at each stage of the processing, the relative position of the
data byte being dealt with. Because of this I've added two additional
local variables to the OpenDestOK() routine, the routine which
handles the byte transfer operations. You’ll see these in the source
as:

ULONG position;/* the ‘byte number’ of the character in the file */
ULONG key_length; /* length of the encryption key string */

Believe it or not the code for the encryption is very simple — in fact
this single line of code will do the job:
c=cA(*(key_p+(position¥key_length))+position%256); Where does
this line of code go? We already know the answer to this question
from the Warnier diagram!

Here then to complete this appendix is a command line encryption
utility based on the use of the ‘black box’ routine we devised.
Remember that the function EncryptDecipher() can be taken out
(along with a header containing the necessary #includes, #defines
and prototypes) and used in any program which needs to use, or
provide, such a facility:

342

Mastering Amiga Programming Secrets

/. N */
/* Example: A5-5: parameter driven encryption utility */
/* */

/* some includes... */

#include <stdio.h>

#include <exec/types.h>

/* i/
/* some defines... */

#define NO_ERROR 0

#define NO_SOURCE 1

#define NO_DEST 2
#define BAD_WRITE 3
* */

/* some prototypes...*/

UBYTE OpenSourceOK(FILE *source_p, TEXT *dest_name_p, TEXT
*key_p);

UBYTE OpenDestOK(FILE *source_p, FILE *dest_p, TEXT
*dest_name_p, TEXT *key_p);

UBYTE EncryptDecipher(TEXT *source_name_p, TEXT
*dest_name_p, TEXT *key_p);

/* */
/* some globals (just for the text messages of this exam-
ple)... */

TEXT *message[] = {
"function complete\n",

"cannot open source file\n",

"cannot open destination file\n",

"write error - removing destination file\n"
}
/* */
main(int argc, char *argv[])
{

TEXT *source_name_p, *dest_name_p, *key_p; UBYTE
error_code;

source_name_p=argv[1]; dest_name_p=argv[2]; key_p=argv[3];

error_code=EncryptDecipher(source_name_p, dest_name_p,
key_p);

printf(message[error_code]);

}

More Program Design Notes
[ote b it = e 1 i sV e e e e

/* */
UBYTE EncryptDecipher(TEXT *source_name_p, TEXT
*dest_name_p, TEXT *key_p)

{
FILE *source_p; UBYTE error_number=NO_ERROR;

if(source_p=fopen(source_name_p,"“rb*))

error_number=0penSourceOK(source_p, dest_name_p,
key_p);

else error_number=NO_SOURCE;
return(error_number) ;
}
/* */
E:YTE ?penSourceOK(FILE *source_p, TEXT *dest_name_p, TEXT
ey_p

{
FILE *dest_p; UBYTE error_number=NO_ERROR;

if (dest_p=fopen(dest_name_p,“wb"))

error_number=0OpenDestOK(source_p, dest_p,
dest_name_p, key_p);

else error_number=NO_DEST;
fclose(source_p);
return(error_number) ;
}
[* */

UBYTE OpenDestOK(FILE *source_p, FILE *dest_p, TEXT
*dest_name_p, TEXT *key_p)

{
BOOL exit_flag; int c;
UBYTE error_number=NO_ERROR;

ULONG position=0; /* the 'byte number' of the charac-
ter in the file */

ULONG key_length; /* length of the encryption key
string */

key_length=strlen(key_p);
do {
if((c=fgetc(source_p))==EOF)
{
fclose(dest_p); exit_flag=TRUE;

}

Mastering Amiga Programming Secrets
R e e S P N N T e SR

else

{

c=c”(*(key_p+(position%key_length))+posi-
tion%256) ;

position++;

if((fputc(c, dest_p))==EOF)
{
fclose(dest_p);
error_number=BAD_WRITE;
remove(dest_name_p);
exit_flag=TRUE;

}
}while(l!lexit_flag);
return(error_number);

}
/* */

Keeping It In Perspective

Well, that shows you how the Warnier techniques work. [don't use
them all the time and if | know from experience exactly how a
problem should be tackled then I, like other coders, will sketch out
a C-ish solution directly. In more complex cases where | really
needed to think about what was being done however I've found
these techniques absolutely invaluable. I'd never force any coder to
use these methods but will tell you now that [firmly believe that
they are incredibly useful once you’'ve had some experience in
using them!

Glossary:

active screen

On the Amiga this is the screen
currently displaying the active
window.

active window
The window currently receiving
input from a user. On the Amiga
only one window can be active at
any one time.

address

A number which identifies a
storage location in memory.

addressing mode

a term related to the way in which
a microprocessor locates the
operand that an instruction is to
work on. See chapters 2 and 17
for details of 68000 addressing
modes.

alert

A special red/black Amiga display
used for emergency messages.
algorithm

A series of rules (or a diagramatic
equivalent) that, when followed,
result in a predetermined or
predictable outcome.

alias

An alternative name for a
command.

ALT keys

Two special command keys
situated on the bottom left and
bottom right of the Amiga’s main
keyboard.

alternation

A set of two or more alternative
actions with only one of those
actions being performed.

Mastering Amiga Programming Secrets
—

ALU

Arithmetic Logic Unit

angle brackets

These characters, < and >, are frequently used to identify command
line parameters. For example... dir <filename> implies that
‘filename’ is a parameter which you, the user, should supply.

ANSI C

A official standard for the C language that by early1990 had been
adopted by almost all major C compiler writers.

ANSI C compiler

A compiler that conforms to the ANSI C standard.

applications gadget

A custom Amiga gadget used within an applications program.
arithmetic logic unit

Part of a microprocessor which performs arithmetic and logical
operations.

arguments

The values supplied when a function is used. These values are also
often called parameters.

array

A data structure that allows an information set to be indexed by a
subscripted variable.

array bounds

The smallest and largest acceptable index for an array.

ASCIl

American Standard Code for Information Interchange consists of a
set of 96 displayable and 32 non displayed characters based on a
seven bit code.

asynchronous

Some operation which is executed/performed without reference to
an overall timing source. Asynchronous operations can therefore
occur at irregular timing intervals.

automatic variable

Another name for a local variable.

backdrop window

An Amiga intuition window which always stays at the back of the
screen display and cannot be depth rearranged.

background program
A program, task, or process, which is running somewhere in

Glossary
]

memory but not interacting directly via a terminal.

back-up

To make a duplicate of a program or data disk. Back-up copies are
usually made for either safety or security purposes.

baud rate

A measurement of the rate of data transmission through a serial
port. Thebaud rate divided by ten is a rough measure of the
number of characters being transmitted per second.

BCD

Binary Coded Decimal.

binary

A number system using base 2 for its operations.

binary search

A method of searching an ordered table or file by successively
dividing the search area in half.

bit

An abreviation of “binary digit".

bitmap

An array of bits which form a system'’s display memory. Modifying
the data in the bitmap alters the picture on the display. The Amiga
uses a bitmap display consisting of a number of two dimensional
‘bitplanes’.

blanking interval

The period of time when a video beam is outside of the screen
display area. It's a good time for a program to do things which
might visually jar the display - the idea is to ensure that all of the
necessary changes have been made before the video beam comes
back into the visual area.

Boolean algebra

The mathematics of a class of logical operations closely related to
set theory mathematics.

boot

To start up a computer system.

borderless window

A window without any visible edge lines.

BPS
Bits per second.

Mastering Amiga Programming Secrets
e S VS N T O =SV |

branch

A type of processor instruction which causes control to pass from
one section of a program to another. The branch is achieved by
altering the contents of the processor’s program control register
(this is the register which tells the processor where it should get its
next instruction from). On the 68000 the term branch is reserved
for instructions which use relative addressing.

buffer

An area of memory used to hold data temporarily whilst being
collected or transmitted.

bug
A fault within a program that has not yet been found. Also see
“Debug”.

Cc

One of the best high-level programming languages that has ever
been developed.

call

To activate a program, function or procedure.

chain
See linked list.

character string
A sequence of printable characters.

checkmark

A small image, usually a tick, which indicates that a menu item has
been selected by a user.

checksum

A number which is used to ensure that a block of data is correct
and has not been inadvertently changed. Checksums are used to
verify proper transmission and reception of data, to guard against
deliberate alteration of sensitive file records etc.

child process

A process which has been brought into life by a program rather
than directly by a user.

clear
Change the value of a binary bit from 1 to zero.

CLI
Command line interface.

click
A rapid press and release of a mouse button.

Glossary
T R P

clipping
Preventing the parts of an image which lie outside of a specified
drawing area from being displayed.

close gadget
A gadget in the top left corner of an Amiga window which allows a
user to remove the window from the display.

colour indirection

Powerful pixel colouring technique whereby the binary number
formed by the appropriate image bits determines which colour
register will be used.

colour register

The Amiga has 32 hardware colour registers which means it has
the ability to select from a palette of up to 4096 colours.

command file

An ordinary (usually ASCII) textfile containing executeable system
commands.

comment

A remark, social or otherwise, written within a program.

commenting out

In the assembly language world this term implies that part of the
source code of a program has been eliminated not by removing it
but by adding * or ; characters at the beginning of each line of a
code section (thus rendering it inoperative because those lines are
then treated as comments by the assembler). It is a trick
frequently used by programmers during program development.

composite video

A video signal which includes both picture and sync information.
Can be transmitted using single co-ax cable.

complement

“Binary complement”, the process of turning all 1's to 0’s and all 0's
to 1's.

concatenate

Join together. Strings, files etc., may be concatenated!

constant
Any value which does not change.

contiguous

Adjacent, lying next to each other etc. A contiguous block of
memory is a block whose addresses are numerically adjacent and
contain no gaps.

350

Mastering Amiga Programming Secrets
—

control character

A character that signifies the start or finish of some process.

Copper
An abreviation for the Amiga’'s Co-processor chip.

Co-processor

Brilliant and powerful Amiga chip which handles much of the
display work. This chip has its own instruction set which allows it
to modify display characteristics without requiring 68000
processor intervention. Advanced Amiga programmers write their
own Copper lists (Co-processor programs) for doing strange and
wonderful graphics tricks.

CPU

Central Processing Unit.

crash

A term used when a computer program terminates unexpectedly or
when the system hardware or software malfunctions. Usually
reserved for serious problems that have no way of escape other
than restarting the system.

CRT

Cathode Ray Tube

data set
A collection of data items.

debug
To eliminate errors within a program.

debugger

A program designed to help programmers find errors (bugs) in their
programs. Nowadays some highly sophisticated interactive
debuggers are available which can link into the original source code
as a program is executing.

decimal constant
A constant written as a base 10 number.

default value
A value which will be supplied automatically if no other is given.

delimiting characters
Characters placed at the beginning or end of a character string.

depth arrangement gadget

An Amiga system gadget which allows a user to depth arrange
(bring to front or send to back) a window in relation to other
windows currently displayed.

Glossary
|
destination file
A file being written to.

digital-to-analogue converter

A hardware device which will convert a binary number into an
analogue (continuously variable) level signal.

DMA

Direct Memory Access

direct memory access

A method of data transfer whereby intelligent hardware devices can
read and write to memory without the main microprocessor being
involved.

disable

To prevent something from being used.

display memory

The RAM area that contains data used to produce the screen image.
display mode

A particular type of screen display... low resolution, high
resolution, non-interlacedd etc.

double-click

Pressing and releasing a mouse button twice in quick succession.

double-menu requester

An Amiga requester which can be opened by a double-click of a
mouse button.

drag

Shifting the position of a screen object by selecting it and, whilst
holding the mouse button down, moving (dragging) it to another
location.

dual playfield

An Amiga display mode which allows two separate playfields to be
displayed and controlled simultaneously.

editor

See text editor.

enable
To make something available for use.

encrypt

To convert a file (or other information set) into a form which cannot
easily be understood. Data is usually encrypted for security
purposes.

Mastering Amiga Programming Secrets
e S e S S Sl s o o S BB Sr
EOF

End of File

Exec

The Amiga’'s low level system software which controls tasks, task
switching, interrupt scheduling, message passing, [/0 and many
other underlying system functions.

extended selection

A method of selecting more than one option from a menu.

FIFO

First In First Out

file

A set of data items held on diskette, tape or other medium.
filename

A name given to a file for identification puroses.

fill

To colour or draw a pattern into an enclosed area.

flag

A single bit within a microprocessor register or memory location
which has been chosen to represent some TRUE/FALSE, YES/NO,
type situation.

floating Point

A means of representing numbers in the binary equivalent of
“scientific notation”,i.e., by specifying an exponent and a mantissa.
gadget

An Amiga icon type object. Amiga gadgets can represent on/off
switches, one and two dimensional proportional sliders, can collect
text string and number messages. Some standard graphic forms are
available but most Amiga programmers delight in creating their
own graphics gadget masterpieces.

Genlock

Hardware device which allows the capture and playback of video
tape frames.

ghosting

Overlaying an image with a layer of dots making it slightly
indistinct. Ghosting of gadgets and menu items is used to tell a
user that certain options are not available.

Gimmezerozero window

An Amiga window which has a separate bitmap for the border
graphics.

Glossary
e b e]
glitch
A transient, usually unreproduceable, problem usually associated
with some hardware malfunction.
hard copy
A printed listing of some computer output as opposed to the
output displayed on a VDU screen.
hashing
or “Key to address transformation” is a collective term used to
describe the techniques for calculating the address of a data item
(or data item set) by using a mathematical function of the search
key.
header file
Another term for a C include file.

hexadecimal

A base 16 numbering system using the digits 0 - 9 and the letters A
- F.

hexadecimal constant

A base 16 constant which in assembler is written with the prefix $
followed by the hexadecimal digits themselves.

iconic

A “picture” representation, c.f. icons

IDCMP

Intuition Direct Communications Message Port. Arguably the most
important means of two way, program <-> Intuition,
communication.

170
input/output.
interrupt

An externally instigated request that, if accepted, causes the
processor to save its current status and perform some required
function. When the function has been completed the status of the
processor is restored and control handed back to the interrupted
program.

IntuiMessage
Messages created for applications programs by Intuition.

Intuition

Users regard Intuition as the Amiga’s high level graphics interface,
ie the overall Workbench orientated WIMP arrangement.
Programmers take a much lower level view regarding Intuition as a
mass of system routines and object definitions which can be used
to simplify their programming tasks. The Intuition approach allows
programmers to easily create programs which use windows,

354

Mastering Amiga Programming Secrets
I R P e Y BN TS U R ()

gadgets, menus etc.

jump

A type of processor instruction which causes control to pass from
one section of a program to another. The jump is achieved by
altering the contents of the processor’s program control register
(this is the register which tells the processor where it should get its
next instruction from). The 68000 implements ordinary jumps,
subroutine style jumps and branches (the later term is reserved for
instructions which use relative addressing).

keymap

A translation table which describes the conversion of Amiga
keyboard key presses into specific numerical codes.

label

Rectangular shaped paper, often sticky, used for placing
identification markings on objects.

label

An identification name used within the source code to refer to a
particular section of coding.

linked list

A set of data items linked together by using pointers. Sometimes
called “chains”.

long word

On the Amiga this implies a 32 bit binary number.

low-level language

A computer language whose primitive operations are closely related
to the processor on which the language runs. Assembly languages
are low-level.

memory map

A diagram showing the allocation of the various parts of memory
chosen for a particular system or program.

menu bar

A strip in an Amiga screen title bar which, when the right mouse
button is depressed, displays the menu list categories.

menu button

The Amiga's right-hand mouse button.

message port

A fundamental software structure used by Exec’'s communication
mechanism.

mutual exclusion
Gadgets and menu items are mutually exclusive if the selection of

Glossary
|

one item automatically prohibits the selection of any alternative
items.

NTSC

The National Television Standards Committee standard for
composite video. Used mainly in North America.

null-terminated string

A string of bytes which are terminated by a zero value.

octal
A base 8 numbering system.

operand
The value upon which an instruction or statement will operate.

operating system

A collection of routines that perform the I/0 and other hardware
dependent chores that are needed for a computer to function.

PAL

Phase Alternate Lines. A composite video standard used widely in
the UK and western Europe.

parallel port

Hardware device which, on the Amiga, is used for transmitting data
eight bits at a time. Used mainly for printer connection.parameter

Any value which must be explicitly passed to a subroutine,
function, procedure or program in order for it to be properly
executed.

pen

Common term for a variable which contains a colour register
number.

peripheral

Any external or remote device connected to a computer system, eg
a printer.

pixel

The smallest addressable part of a screen display.

playfield

Another name for a screen background.

pointer

An address, record number or other indicator that specifies the
next item of a data set taken in a specified logical order. With 68000
assembly language pointers are normally taken to mean addresses.

Preferences

An Amiga system program which allows a user to set a large
number of user-definable I/0 characteristics.

355

Mastering Amiga Programming Secrets

primitives

Another name for Amiga library functions and system routines.
proportional gadget

A standard Intuition gadget that allows one and two dimensional
movement to be detected. The user is able to move a knob or slider
around by dragging it using the mouse. As the slider moves
Intuition transmits appropriate position values to the program.
refresh

To re-draw part (or all) of a graphics display.

render

Draw an image into a display area.

repetition

Repeating a set of actions a given number of times.

requester

An Intuition window which appears asking a user to provide some
information.

RAM

Random Access Memory.

ROM
Read Only Memory.

scroll

To make a graphics display move upwards/downwards (vertical
scrolling) or sideways (horizontal scrolling).

select box

The area of a gadget or menu within which Intuition can recognize
a left-click select operation.

select button

The Amiga’s left-hand mouse button.

sequence
Operations following each other in time.

set
A collection of items.

set
The act of turning a binary 0 into a binary 1 value.

Shell

An improved CLI interface which offers a number of useful new
facilities including line editing and re-use of previously typed
commands.

Glossary
fusecoms o i 2]

sizing gadget

An Amiga system gadget which allows a user to drag-alter the size
of an Intuition window.

software

Any program or routine for a computer.

source code

The text version of a program, ie the program actually writen in the
first place.

source file

A file from which data is being read.

sprite

A small graphical image. The term was originally applied to images
whose movements were controlled directly by hardware. The Amiga
supports both simple hardware sprites, virtual sprites, and a
number of more sophisticated animation objects.

submenu

A secondary menu which appears once a user has selected a
specific menu item.

SuperBitMap window

An Intuition window which has its own bitmap rather than using
the underlying screen display’s bitmap.

synchronous

Operations which are performed with reference to a controlling
overall timing source.

syntax

The formal grammatical structure of a language.

terminal handler

A process which looks after terminal/keyboard input/output
operations.

text editor

A program that enables text to be written, manipulated, stored etc.
Word processor programs are sophisticated text editors.

title bar

An optional strip at the top of a window or screen which may
contain either a name, some system gadgets, or both.

toggle select

Boolean gadgets (on/off state gadgets) can be programmed so that
they switch from one state to another each time they are selected
by a user. Such gadgets are called toggle select gadgets.

357

Mastering Amiga Programming Secrets

R S e R o s S S|

tool

An Amiga WorkBench name for an application program.

trackerball

An input device which is like an upside down mouse. Instead of
moving the whole device around, as one does with a mouse, the
user moves a ball using fingers/thumb or palm of the hand. This
movement is then translated into screen pointer movement.
Trackerballs, like the more common mouse device, usually provide
button controls as well.

two’s complement

A numerical representation in which positive numbers are
represented as ordinary signed binary but negative numbers are
represented by complementing the number and adding one.

UART

Universal Asynchronous Receiver/Transmitter device. A hardware
device which controls the serial port link.

vDU

Visual display unit

Warnier diagram

A design diagram that uses sets of hierarchical curly brackets to
indicate the logical structure of a problem, program or system.

wild card symbols

Symbols which may be used to represent any character in a pattern.

word

In the world of the 68000 programmer, and on the Amiga, a word is
taken to mean a 16 bit binary number.

Workbench

The Amiga's inbuilt high-level interface applications program which
allows users to interact with AmigaDOS, run applications programs
etc, without getting involved with CLI/Shell commands.

Mastering
Amiga
Guides

Titles Currently Available

Brief details of the titles currently
available along with review
segments are given below. New
publications and their contents are
subject to change without notice. If
you would like a free copy of our
catalogue and to be placed on our
mailing list then phone or write to
the address below.

Bruce Smith Books,
PO Box 382,
St. Albans, Herts, AL2 3JD
Telephone: (01923) 894355
Fax: (01923) 894366

Note that we offer a 24-hour
telephone answer system so that
you can place your order direct by
‘phone at a time to suit yourself.

Note that we do not charge for P&P
in the UK and endeavour to
dispatch all books within 24-hours.

Buying at your Bookshop

All our books can be obtained via
your local bookshops - this
includes WH Smiths which will be
keeping a stock of some of our
titles, just enquire at their counter.
If you wish to order via your local
High Street bookshop you will need
to supply the book name, author,
publisher, price and ISBN number.

Overseas Orders

Please add £3 per book (Europe) or
£6 per book (outside Europe) to
cover postage and packing. Pay by
sterling cheque or by Access, Visa
or Mastercard. Post, Fax or Phone
your order to us.

Dealer Enquiries

Our distributor is Computer
Bookshops Ltd who keep a good
stock of all our titles. Call their
Customer Services Department for
best terms on 021-706-1188.

Mastering Amiga Programming Secrets
R R T N Ve S e Lo YO e X A el

Compatibility
We endeavour to ensure that all general Mastering Amiga books are

fully compatible with all Amiga models and all releases of
AmigaDOS and Workbench.

Mastering AmigaDOS 3 Volume One - Tutorial by Mark Smiddy
ISBN: 1-873308-20-5, Price £21.95, 384 pages.

The place to begin if you want to learn about and effectively use
AmigaDOS. Covering both AmigaDOS 2 and 3, the tutorial guide
assumes no previous knowledge of AmigaDOS. From formatting a
disk to pipes and multitasking, even multi-user, this volume will
turn the novice into an expert with its practical approach and many
fascinating examples. The disk which accompanies the book
contains all the examples and many other useful AmigaDOS tools.

Mastering AmigaDOS 3 Volume Two - Reference by Mark Smiddy
ISBN: 1-873308-18-3, Price £21.95, 416 pages.

Following on from the best selling Mastering AmigaDOS 2 volumes,
Mastering Amiga DOS 3, Volume Two is a complete A to Z reference
to DOS commands covering versions 2.04, 2.1 and 3. The action of
each command is explained and examples to try are provided.
Chapters on AmigaDOS error codes, viruses, the Interchange File
Format (IFF), the Mountlist and the new hypertext system,
AmigaGuide, complete this valuable guide.

Mastering Amiga Scripts
ISBN: 1-873308-36-1, Price 319.95, 319 pages.

Mastering AmigaDOS Scripts contains over one hundred ready-to-
run script programs. There are scripts programs for AmigaDOS
versions 3.x, 2.x and 1.x so this book is applicable to all Amigas,
including the Amiga A1200, A600, A500 Plus, A500, A4000, A3000
and A2000 microcomputers.

The script programs are fully documented line by line so that you
can learn form them, pickng up the new techniques and
programming twists which AmigaDOS guru Mark Smiddy has
devised. Beginners will find the scripts easy to load and run,
providing handy off-the-shelf utilities and full programs such as
database and diary.

Workbench 3 A to Z Insider Guide by Bruce Smith
ISBN: 1-873308-28-0, Price £14.95, 256 pages.

Every aspect of the Amiga Workbench is documented with screen
shots and examples of usage. Once you've become familiar with
Workbench techniques, this alphabetical reference proves
invaluable when you need to find a file, remember a menu
operation or...how do you run that Commodity? Owners of A500
Plus and A2000/3000 upgrading to Workbench 3 will find this an
essential add-on to their manuals.

Mastering Amiga Guides
R e NN TN PO PO R

Amiga A1200 Insider Guide by Bruce Smith
ISBN: 1-873308-15-9, price £14.95, 256 pages.

Assuming no prior knowledge, it shows you how to get the very
best from your A1200 in a friendly manner and using its unique
Insider Guide steps. Configuring your system for printer, keyboard,
Workbench colours, use of Commodities and much much more has
made this the best-selling book for the A1200.

As well as easy to read explanations of how to get to grips with the
Amiga, the book features 55 of the unique Insider Guides, each of
which displays graphically a set of step by step instructions. Each
Insider Guide concentrates on a especially important or common
task which the user has to carry out on the Amiga. By following an
Insider Guide the user learns how to control the Amiga by example.
Beginners to the A1200 will particularly appreciate this approach to
a complex computer.

Amiga A1200 Next Steps by Peter Fitzpatrick
ISBN: 1-873308-24-8, Price £14.95, 256 pages.

For those who have mastered the very basics of the A1200 this
book is the ideal companion to our Amiga A1200 Insider Guide.
Leaving the basics of the Workbench and AmigaDOS behind this
book takes you the next step and shows you how to get the very
most out of your A1200, using both the software supplied and
other material readily available.

For example, learn how to use MultiView to write your own
adventure game and edit a picture! Create your own fully
recoverable Ram disk, get better results when you print out,
recover deleted files. We even show you how to add your own hard
disk and copy software onto it! This is only the tip of the iceberg.
Amiga A1200 Next Steps is worth its weight in gold!

Amiga Assembler Insider Guide by Paul Overaa
ISBN: 1-873308-27-2, Price £14.95, 256 pages.

The Amiga Assembler Insider Guide has been written for the new
user who wishes to learn to write programs in the native code of
the Amiga computer - assembly language. The approach taken to
this often daunting subject is designed to achieve practical results
with short examples which demonstrate different programming
skills. Each program in the book can be assembled and run in under
one minute so the beginner need have no fear of long impenetrable
listings. This is programming for the novice, made all the easier
though the mini Insider Guides which summarise important
operations and fundamental concepts.

The book is compatible with all the main assemblers on the market.
A support disk is available from the publisher which contains the
A68K assembler, all the listings in the book, additional utilities and

361

362

Mastering Amiga Programming Secrets
s Sl E LT e S R R i e s S i e e]

examples (cost £2.00 P&P). With the Amiga Assembler Insider Guide
learning assembler on the Amiga has never been easier.

Amiga Disks and Drives by Paul Overaa
ISBN: 1-873308-34-5, Price £14.95, 256 pages. FREE Utilities disk.

Just what do you do when all your valuable data is locked in your
computer? How do you copy files and install software? What do you
do when you can’t find a file on the Workbench screen? This book
has all the answers!

Paul Overaa teaches you how to use and care for all types of disk
drives in order to minimise the risk of problems, to get a better
understanding of how they work and what you can do if things go
wrong. Packed with practical topics, it’s step by step guides are
invaluable to novice and advanced users alike. Applicable to all
Amigas.

Amiga A1200 Beginners Pack

ISBN: 1-873308-30-2, Price £39.95 plus £3 p&p, one-hour
Workbench basics video and two books (A1200 Insider Guide and
Amiga Next Steps) plus 4 disk of essential software.

Combining the Amiga A1200 Video, the Amiga Next Steps Insider
Guide and the Amiga A1200 Insider Guide this bumper pack is the
perfect gift for somebody you know taking their first tentative
steps along the wonderful road of Amiga computing.

The disks of software contain the most sought after programs every
beginner should have, including a database, a wordprocessor, a clip
art selection, the OctaMed music sampler, a virus checker, a file
recovery package and a disk compression utility.

If you already have one part of the pack then telephone us for an
upgrade price.

Amiga Workbench 3.1 Booster Pack

ISBN: 1-873308-41-8, Price £39.95 plus £3 p&p, one and a half hour
Workbench video, two books (Workbench 3 A to Z and Amiga Disks
& Drives) a Quick Reference Card and a disk of essential software.

Already over 400,000 A1200 and CD32 owners enjoy the power and
versatility of Workbench 3. Now the million plus owners of A500,
A2000 and other recent machines can enjoy the same power with a
simple chip upgrade.

The Amiga Workbench 3 Booster Pack provides the most
comprehensive support for such new users. The Workbench 3 A to
Z book and the 90 minute Amiga A1200 - A Deeper Look video
provide the complete guide in both tutorial and reference material
to Workbench 3. The Amiga Disks and Drives Insider Guide goes on
to take the new user to intermediate levels, showing how to
optimise the use of their machines in both speed, capacity and

Mastering Amiga Guides
[e e]

security. All this, a disk of essential software and the Quick
Reference card make it an essential purchase.

If you already have one part of the pack then telephone us for an
upgrade price.

Introduction to the Amiga A1200 Video by Wall Street Video/BSB
BSBVIDAMIOO1, Price £14.99, one-hour Workbench basics video.

New from Bruce Smith Books in association with Wall Street Video -
Australia’s leading Amiga training company - the perfect video
introduction to using your Amiga A1200 and a perfect companion
for the world's best selling A1200 book, Bruce Smith's classic Amiga
A1200 Insider Guide. This one hour video provides a basic tutorial
on how to set up and run your Amiga A1200 by using great
animations and split screens to increase your understanding or the
concepts being explained. Re-examine those tricky grey areas by
instantly rewinding the video.

Applicable to both hard and floppy disk users the Amiga A1200
Video may also by used to understand the Amiga A4000 and at
£14.99 represents outstanding value.

Introduction to the Amiga A1200 - A Deeper Look Video by Wall
Street Video/BSB

BSBVIDAMIO0O02, Price £14.99, 75 minutes video.

The follow-up to the best-selling Introduction to the A1200 from
Australia's Wall Street Video. Applicable to any Workbench 3 Amiga,
this video goes beyond the first steps of using your machine to
comprehensively tackle all the features of Workbench 3.

Mastering Amiga System by Paul Overaa
ISBN: 1-873308-06-X, Price £29.95, 398 pages. FREE disk.

Serious Amiga programmers need to use the Amiga’s operating
system to write legal, portable and efficient programs. But it's not
easy! Paul Overaa shares his experience in this introduction to
system programming in the C language. The author keeps it
specific and presents skeleton programs which are fully
documented so that they can be followed by the newcomer to
Amiga programming. The larger programs are fully-fledged
examples which can serve as templates for the reader’s own ideas
as confidence is gained.

Mastering Amiga Printers by Robin Burton
ISBN: 1-873308-05-1, Price £19.95, 336 pages. FREE Programs disk

After reading Mastering Amiga Printers, any Amiga owner will be
able to choose effectively the ideal printer for his or her
requirements. The Amiga’s own printer control software is pulled
apart and explained from all points of view, from the Workbench to
the operating system routines. Individual printer drivers are
assessed and screen-dumping techniques explained.

364

Mastering Amiga Programming Secrets

Mastering Amiga C by Paul Overaa
ISBN: 1-873308-04-6, Price £19.95, 320 pages.

FREE Programs Disk and NorthC Public Domain compiler.

C is one of the most powerful programming languages ever created
with much of the Amiga’s operating system written using C. The
introductory text assumes no prior knowledge of C and covers all of
the major compilers, including the charityware NorthC compiler
supplied with this book when ordered direct from BSB. It is ideal for
anyone using their Amiga to catch up on computer studies!

Mastering Amiga ARexx by Paul Overaa
ISBN: 1-873308-13-2, Price £21.95, 336 pages. FREE disk.

Now a standard part of Commodore’s software strategy and readily
available to Workbench 2 and 3 users, ARexx has been much
admired by the programming community and is now available to all
as a third party product. This book is an ideal companion to the
ARexx documentation, explaining ARexx’s main features, how it
controls other programs, its built-in functions and support
libraries, methods for creating well structured ARexx programs and
much, much more.

Amiga BASIC - A Dabhand Guide by Paul Fellows
ISBN: 1-873308-87-9, Price £17.95, 560 pages.

FREE Disk with ACE Freeware BASIC compiler.

BASIC is the computer programming language devised for beginners
and now a standard on most computers. The Amiga doesn’t usually
come with a BASIC as standard but we provide one with the book so
you have a head start. A number of commercial BASICs are available
including HiSoft BASIC 2, True Basic and FBASIC. AMOS is also
BASIC-like in its structures and keywords. This book is a substantial
introduction to the language and is peppered with some of the
cleverest routines around. Paul Fellows is a leading software author
in his own right and his programming experience shines through in
this easy to read guide. If you want to learn about programming in
BASIC then this is the place to start.

Secrets of Frontier Elite by Tony Dillon
ISBN: 1-873308-39-6, Price £9.95, 128 pages.

If you want to become Elite, or just incredibly rich, then get this
book. This is the ultimate guide to the ultimate space trading game.
Learn how to move up the ranks of the military, how to choose the
best ships and weapons, how to trade and mine to the top. Games
editor Tony Dillon has researched the game and included many of
the hints and tips which have come his way. Find out how to gain
control of the secret Mirage ship and how to become Elite, by the
back door.

Index

A
AbsExecBase 96
abstract data types 17,71
AddIntServer() 52
ADT - see abstract data types
allocation control33, 42, 85
AllocSignal() 66
amiga.lib 65, 87,193
Aztec C conventions 206
B
BitMap structure 264
blitter minterm values 260
bootblock code 273
boot code checksums 282
boot sectors 274
C
copper programming ..114,119
CEND() macro 115
child processes 77
CINIT) macro 115
ClipBlit() 235
CloseDevice() 153
CloseLibrary() 97
CMOVE() macro 115
CO-processor 91
coding style conventions11
colour - cycling 187
flashing 58,74,77
indirection 187
copper instruction set . .92, 126
copper list searching 265
copperlists 91
CreateExtlIO() 153
CreatePort() 65,154,197
custom boot code 281
CWAIT() macro 114
CycleMessages 191

D
datatypes 18
DeleteExtlO() 155
DeletePort() 154
delta times 170, 171
device - commands 150
serial 148
timer 156, 198
trackdisk 273, 276
devices 147, 155
DolO() 156
Drawlmage() 216
DrawTiles() -
assembler form 222
recursive form 246
DriveGeometry structure ...274
dummy subroutines 297

dynamic resource handling
......... 31,71, 181, 195, 276

E
event handling 47, 182
exclusive-ORing 208, 340
Exec 51, 80, 95, 137
extern references 47
FindTask() 69
flashing colours 58, 74, 77
FlashMessages 79
floppy disk layout 273
Forbid()/Permit()
useof 86, 100, 196
FreeSignal() 67
function - AddIntServer()52
AllocSignal() 66
ClipBlit() 235
CloseDevice() 153
CloseLibrary() 87
CreateExtlO() 153
CreatePort() .. .65, 154, 197
DeleteExtlO() 155
DeletePort() 154
DolO() 156

Mastering Amiga Programming Secrets
e o R T e A e A e it stz

Function - FindTask() 69
FreeSignal() 67
GetMsg() 81
GetRGB4() 58
LoadRGB4() 190, 198

MakeScreen() 117
OpenDevice() 152
OpenLibrary) 97, 138
pointers 34
PutMsg() 81
putreg() 54
RemintServer() 53
ReplyMsg() 81
RethinkDisplay() 117
SetFunction() 141
SetRGB4() 58
Signal() 67
Wait() 68
G
Gadtools library 44
GetMsg() 81
GetRGB4() 58
global prefixes 12, 300
global variable allocation48
H
hardware copper lists 91
|
incremental testing 296
INTB_LVERTB 53
intermediate copper lists91
interprocess communications ..
.................... 79, 192
Interrupt structure 53
interrupts 51
IntuiMessages 47, 182

Intuition .44, 116, 182, 188, 263

IOExtSer structure 148
IORequest structure 148
library access 138
L

Library Vector Offsets ..98, 139
LoadRGB4() 190, 198

LVO - see Library Vector Offsets

M

make files 49
MakeScreen() 117
masks 68
Message structure 78
Meta events 170,171
Midi 143

Midi channel message types 176

Midi file chunk analysis176
MidiPlayer command 168
MidiPlayer program 167
MidiPlayX 154,157
MidiWriteX 146
mixed coding 203
mosaic effects 251
move (copper ins) 93

MPX files................ 145
MsgPort structure
multiple message ports
mutually exclusive operations . .

....................... 310
N
Node structure 53,78
o
OpenDevice() 152
OpenlLibrary() 97,138
OpenWindowTagList() 46
OpenWindowTags() 47
P
pointer suffixes 12, 300
pollloops 14
printf() debugging 299
project management 47
PutMsg() 81
putreg() 54
Q
queueing by reference 79
R
recursion 241
Release 2 changes 45
RemintServer() 53

replacement system function

example 141
ReplyMsg() 81
resource handling .. .31, 42, 71,
............... 181, 195, 276

RethinkDisplay() 117
run time libraries 95
running status 171
S
SAS/Lattice C conventions . .205
scrolling 263
serial device 148
serial device flags 149
SetFunction() 141
SetRB4() 58
shading effects 119
signal bits 68
Signal() 67
signals 65
skip (copperins) 92
smake SAS utility 49
stack ADT access routines
..................... 22, 36
stacks L 19
Standard Midi files 169
string reversal 29
structure - BitMap 264
DriveGeometry 274
Interrupt 53
IOExtSer 148
IORequest 148
Message 78
MsgPort 78
Node 53,78
ViewPort 116
syntax errors 296
SysBase 96
sysexevents 170
T
tag identity values 46
taglists 45
Tagitem structure 45
TD_GEOMETRY 274
tile effects 213
timer device 156, 198

Index
T

trackdisk device - reading from
....................... 280
writingto 280
trackdisk device 273,276
U
UNIT_MICROHZ 156
user copper lists 91, 116
\'}
vanillaC 37
variable name conventions
.................... 12, 300
vertical blank interrupt 52
ViewPort structure 116
VIFUSES 137
w
wait (copperins) 93
Wait() 68
Warnier diagram conventions
....................... 309
Warnier diagrams 307
X
XDEF/XREF 205

367

Mastering Amiga Programming Secrets

The Amiga is capable of spectacular performance in sound and
graphics, given the programming power to drive it. In this book you
can improve your programming knowledge while stretching your
Amiga’s custom chips to the max.

Paul Overaa has applied his renowned Amiga programming
experience to devise a selection of routines in C and assembly
language which all Amiga programmers will find invaluable.
Subjects covered include:

Colour cycling Tile-based playfield displays
Blitter chip code tricks Smooth scrolls

Custom boot blocks Copper list effects

Exec interrupts Abstract data types

Viruses MIDI music

and much, much more.

Learn how to achieve stunning sound, colour and scrolling effects in
your programs by using the Amiga’s special graphics chips. All the
programs are fully documented and the programming concepts
explained so that you can use the ideas and routines in your own
projects.

The programs which appear in the book are available on disk from
Bruce Smith Books for the cost of postage and packing.

- Bruce Smith Books -
Publishers of the World’s Best Selling Amiga Books

ISBN 1-873308-33-7

9 ILm?z 308332 £21 .95

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License. To
view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA

94042, USA.

Copyright:
Paul Overaa, 1995

Released under Creative Commons; 2018

